在室内停车场中应用基于RFID的LANDMARC算法进行车辆定位时,由于室内停车场的复杂结构以及多径效应的影响,车辆定位精度不能通过增加参考标签数目或均匀规则的部署参考标签等方式来提升。提出了一种基于虚拟RFID标签的室内定位算法(loca...在室内停车场中应用基于RFID的LANDMARC算法进行车辆定位时,由于室内停车场的复杂结构以及多径效应的影响,车辆定位精度不能通过增加参考标签数目或均匀规则的部署参考标签等方式来提升。提出了一种基于虚拟RFID标签的室内定位算法(location algorithm based on virtual tag,LAVT)。该算法通过近邻标签确定车辆的近邻区域,计算出近邻区域的外心并插入虚拟参考标签;通过虚拟参考标签替换原近邻标签、缩小近邻区域面积,使新近邻标签更临近待定位车辆,从而更精确地计算出车辆的位置。仿真实验表明:LAVT算法在室内停车场环境中将车辆定位精度提升了19.03%。LAVT算法应用于室内停车场环境中的车辆定位具有更好的适用性,能满足室内停车场车辆定位的基本需求。展开更多
文摘在室内停车场中应用基于RFID的LANDMARC算法进行车辆定位时,由于室内停车场的复杂结构以及多径效应的影响,车辆定位精度不能通过增加参考标签数目或均匀规则的部署参考标签等方式来提升。提出了一种基于虚拟RFID标签的室内定位算法(location algorithm based on virtual tag,LAVT)。该算法通过近邻标签确定车辆的近邻区域,计算出近邻区域的外心并插入虚拟参考标签;通过虚拟参考标签替换原近邻标签、缩小近邻区域面积,使新近邻标签更临近待定位车辆,从而更精确地计算出车辆的位置。仿真实验表明:LAVT算法在室内停车场环境中将车辆定位精度提升了19.03%。LAVT算法应用于室内停车场环境中的车辆定位具有更好的适用性,能满足室内停车场车辆定位的基本需求。