-
题名机器学习加速理论晶体结构预测研究进展
被引量:2
- 1
-
-
作者
罗啸山
王振雨
高朋越
张微
吕健
王彦超
-
机构
吉林大学超硬材料国家重点实验室
吉林大学计算方法与软件国际中心
吉林大学未来科学国际合作联合实验室
-
出处
《硅酸盐学报》
EI
CAS
CSCD
北大核心
2023年第2期552-560,共9页
-
基金
国家自然科学基金(91961204,12034009,11974134,11904129)
吉林省教育厅科学技术研究项目(JJKH20211042KJ)。
-
文摘
理论晶体结构预测可以在给定化学组分的条件下确定材料的晶体结构,已成为材料科学研究的重要工具。然而,该方法一直面临计算成本高的瓶颈问题。近年来,新兴机器学习方法在传统科学计算上展现了广阔的应用前景,逐渐被引入到晶体结构预测领域。本文主要讨论机器学习方法在理论晶体结构预测领域的最新研究进展,分别从加速晶体结构的能量计算和势能面的探索两个方面介绍领域的最新成果,并对未来研究可能的发展提出抛砖引玉的见解。
-
关键词
机器学习
晶体结构预测
机器学习势
生成模型
-
Keywords
machine learning
crystal structure prediction
machine learning potential
generative model
-
分类号
O469
[理学—凝聚态物理]
-