In the field of dual-pulse laser-induced breakdown spectroscopy(DP-LIBS)research,the pursuit of methods for determining pulse intervals and other parameters quickly and conveniently in order to achieve optimal spectra...In the field of dual-pulse laser-induced breakdown spectroscopy(DP-LIBS)research,the pursuit of methods for determining pulse intervals and other parameters quickly and conveniently in order to achieve optimal spectral signal enhancement is paramount.To aid researchers in identification of optimal signal enhancement conditions and more accurate interpretation of the underlying signal enhancement mechanisms,theoretical simulations of the spatiotemporal processes of coaxial DP-LIBS-induced plasma have been established in this work.Using a model based on laser ablation and two-dimensional axisymmetric fluid dynamics,plasma evolutions during aluminum–magnesium alloy laser ablation under single-pulse and coaxial dualpulse excitations have been simulated.The influences of factors,such as delay time,laser fluence,plasma temperature,and particle number density,on the DP-LIBS spectral signals are investigated.Under pulse intervals ranging from 50 to 1500 ns,the time evolutions of spectral line intensity,dual-pulse emission enhancement relative to the single-pulse results,laser irradiance,spatial distribution of plasma temperature and species number density,as well as laser irradiance shielded by plasma have been obtained.The study indicates that the main reason behind the radiation signal enhancement in coaxial DP-LIBS-induced plasma is attributed to the increased species number density and plasma temperature caused by the second laser,and it is inferred that the shielding effect of the plasma mainly occurs in the boundary layer of the stagnation point flow over the target surface.This research provides a theoretical basis for experimental research,parameter optimization,and signal enhancement tracing in DP-LIBS.展开更多
The self-absorption effect in laser-induced breakdown spectroscopy(LIBS)reduces the accuracy of quantitative measurement results.The self-absorption-free LIBS(SAF-LIBS)has been proved to directly capture the optically...The self-absorption effect in laser-induced breakdown spectroscopy(LIBS)reduces the accuracy of quantitative measurement results.The self-absorption-free LIBS(SAF-LIBS)has been proved to directly capture the optically thin plasma spectra by setting an appropriate exposure time.In this work,a novel SAF-LIBS technique with high repetition rate acousto-optic gating is developed,in which an acousto-optic modulator is used as the shutter to diffract the optically thin fluorescence,and a high repetition rate laser is used to produce quasi-continuous plasmas to enhance the integral spectral intensity,so that the CCD spectrometer can replace an intensified CCD(ICCD)and echelle spectrometer in SAF-LIBS.Experimental results show that the average absolute prediction error of aluminum is reduced to 0.18%,which is equivalent to that of traditional SAF-LIBS.This technique not only effectively shields continuous background radiation and broadened spectral lines in optically thick plasma,but also has advantages of miniaturization,low cost,convenience and reliability.展开更多
基金supported by the National Key R&D Program of China (No. 2017YFA0304203)the National Energy R&D Center of Petroleum Refining Technology (RIPP, SINOPEC)+3 种基金Changjiang Scholars and Innovative Research Team at the University of the Ministry of Education of China (No. IRT_17R70)National Natural Science Foundation of China (NSFC) (Nos. 61975103, 61875108 and 627010407)111 Project (No. D18001)Fund for Shanxi (No. 1331KSC)
文摘In the field of dual-pulse laser-induced breakdown spectroscopy(DP-LIBS)research,the pursuit of methods for determining pulse intervals and other parameters quickly and conveniently in order to achieve optimal spectral signal enhancement is paramount.To aid researchers in identification of optimal signal enhancement conditions and more accurate interpretation of the underlying signal enhancement mechanisms,theoretical simulations of the spatiotemporal processes of coaxial DP-LIBS-induced plasma have been established in this work.Using a model based on laser ablation and two-dimensional axisymmetric fluid dynamics,plasma evolutions during aluminum–magnesium alloy laser ablation under single-pulse and coaxial dualpulse excitations have been simulated.The influences of factors,such as delay time,laser fluence,plasma temperature,and particle number density,on the DP-LIBS spectral signals are investigated.Under pulse intervals ranging from 50 to 1500 ns,the time evolutions of spectral line intensity,dual-pulse emission enhancement relative to the single-pulse results,laser irradiance,spatial distribution of plasma temperature and species number density,as well as laser irradiance shielded by plasma have been obtained.The study indicates that the main reason behind the radiation signal enhancement in coaxial DP-LIBS-induced plasma is attributed to the increased species number density and plasma temperature caused by the second laser,and it is inferred that the shielding effect of the plasma mainly occurs in the boundary layer of the stagnation point flow over the target surface.This research provides a theoretical basis for experimental research,parameter optimization,and signal enhancement tracing in DP-LIBS.
基金National Key R&D Program of China(No.2017YFA0304203)National Energy R&D Center of Petroleum Refining Technology(RIPP,SINOPEC),Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(IRT_17R70)+3 种基金National Natural Science Foundation of China(Nos.61975103,61875108,61775125 and 11434007)Major Special Science and Technology Projects in Shanxi(No.201804D131036)111 Project(No.D18001)Fund for Shanxi’1331KSC’。
文摘The self-absorption effect in laser-induced breakdown spectroscopy(LIBS)reduces the accuracy of quantitative measurement results.The self-absorption-free LIBS(SAF-LIBS)has been proved to directly capture the optically thin plasma spectra by setting an appropriate exposure time.In this work,a novel SAF-LIBS technique with high repetition rate acousto-optic gating is developed,in which an acousto-optic modulator is used as the shutter to diffract the optically thin fluorescence,and a high repetition rate laser is used to produce quasi-continuous plasmas to enhance the integral spectral intensity,so that the CCD spectrometer can replace an intensified CCD(ICCD)and echelle spectrometer in SAF-LIBS.Experimental results show that the average absolute prediction error of aluminum is reduced to 0.18%,which is equivalent to that of traditional SAF-LIBS.This technique not only effectively shields continuous background radiation and broadened spectral lines in optically thick plasma,but also has advantages of miniaturization,low cost,convenience and reliability.