在通常适合于制作埋沟 Si Ge NMOSFET的 Si/弛豫 Si Ge/应变 Si/弛豫 Si Ge缓冲层 /渐变 Ge组分层的结构上 ,制作成功了 Si Ge PMOSFET.这种 Si Ge PMOSFET将更容易与 Si Ge NMOSFET集成 ,用于实现 Si Ge CMOS.实验测得这种结构的 Si Ge...在通常适合于制作埋沟 Si Ge NMOSFET的 Si/弛豫 Si Ge/应变 Si/弛豫 Si Ge缓冲层 /渐变 Ge组分层的结构上 ,制作成功了 Si Ge PMOSFET.这种 Si Ge PMOSFET将更容易与 Si Ge NMOSFET集成 ,用于实现 Si Ge CMOS.实验测得这种结构的 Si Ge PMOSFET在栅压为 3.5 V时最大饱和跨导比用作对照的 Si PMOS提高约 2倍 ,而与常规的应变 Si展开更多
Epitaxy of SiGe layers by an ultrahigh vacuum chemical vapor deposition system is investigated. Observations with a Nomarski microscope and measurements using Raman scattering show that the surface morphology and the ...Epitaxy of SiGe layers by an ultrahigh vacuum chemical vapor deposition system is investigated. Observations with a Nomarski microscope and measurements using Raman scattering show that the surface morphology and the qualities of the epitaxial layers degrade rapidly as the growth temperatures increase from 550℃ to 650℃, but improve greatly when PH 3 is introduced.展开更多
High-vacuum/chemical-vapor deposition (HV/CVD) system was used to grow relaxed SiGe buffer layers on Si substrates. Several methods were then used to analyze the quality of the SiGe films. X-ray diffraction and Raman ...High-vacuum/chemical-vapor deposition (HV/CVD) system was used to grow relaxed SiGe buffer layers on Si substrates. Several methods were then used to analyze the quality of the SiGe films. X-ray diffraction and Raman spectroscopy showed that the upper layer was almost fully relaxed. Second ion mass spectroscopy showed that the Ge compositions were step-graded. Transmission electron microscopy showed that the misfit dislocations were restrained to the graded SiGe layers. Tests of the electrical properties of tensile-strained Si on relaxed SiGe buffer layers showed that their transconductances were higher than that of Si devices. These results verify the high quality of the relaxed SiGe buffer layers. The calculated critical layer thicknesses of the graded Si1-xGex layer on Si substrate and a Si layer on the relaxed SiGe buffer layer agree well with experimental results.展开更多
文摘在通常适合于制作埋沟 Si Ge NMOSFET的 Si/弛豫 Si Ge/应变 Si/弛豫 Si Ge缓冲层 /渐变 Ge组分层的结构上 ,制作成功了 Si Ge PMOSFET.这种 Si Ge PMOSFET将更容易与 Si Ge NMOSFET集成 ,用于实现 Si Ge CMOS.实验测得这种结构的 Si Ge PMOSFET在栅压为 3.5 V时最大饱和跨导比用作对照的 Si PMOS提高约 2倍 ,而与常规的应变 Si
文摘Epitaxy of SiGe layers by an ultrahigh vacuum chemical vapor deposition system is investigated. Observations with a Nomarski microscope and measurements using Raman scattering show that the surface morphology and the qualities of the epitaxial layers degrade rapidly as the growth temperatures increase from 550℃ to 650℃, but improve greatly when PH 3 is introduced.
基金Supported by the National Natural Science Foundation of China(No.69836020)the"985" Program of the Ministry of Education(No.985-information-40 key-5)
文摘High-vacuum/chemical-vapor deposition (HV/CVD) system was used to grow relaxed SiGe buffer layers on Si substrates. Several methods were then used to analyze the quality of the SiGe films. X-ray diffraction and Raman spectroscopy showed that the upper layer was almost fully relaxed. Second ion mass spectroscopy showed that the Ge compositions were step-graded. Transmission electron microscopy showed that the misfit dislocations were restrained to the graded SiGe layers. Tests of the electrical properties of tensile-strained Si on relaxed SiGe buffer layers showed that their transconductances were higher than that of Si devices. These results verify the high quality of the relaxed SiGe buffer layers. The calculated critical layer thicknesses of the graded Si1-xGex layer on Si substrate and a Si layer on the relaxed SiGe buffer layer agree well with experimental results.