期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
BigDataBench:开源的大数据系统评测基准 被引量:34
1
作者 詹剑锋 高婉铃 +6 位作者 王磊 李经伟 魏凯 罗纯杰 韩锐 田昕晖 姜春宇 《计算机学报》 EI CSCD 北大核心 2016年第1期196-211,共16页
大数据系统的蓬勃发展催生了大数据基准测试的研究,如何公正地评价不同的大数据系统以及怎样根据需求选取合适的系统成为了热点问题.然而,应用领域的广泛性、数据类型的多样性和数据操作的复杂性使得大数据基准测试集的设计面临很大的挑... 大数据系统的蓬勃发展催生了大数据基准测试的研究,如何公正地评价不同的大数据系统以及怎样根据需求选取合适的系统成为了热点问题.然而,应用领域的广泛性、数据类型的多样性和数据操作的复杂性使得大数据基准测试集的设计面临很大的挑战.现有的相关基准测试工作要么针对某一类特定的应用或软件栈,要么根据流行度主观地选择大数据负载,难以全面覆盖大数据的多样性和复杂性.针对现有工作的不足,文中讨论大数据评测基准需要满足的需求,并研制了一个跨系统、体系结构、数据管理3个领域的大数据基准测试开源程序集——BigDataBench.它覆盖5个典型的应用领域(搜索引擎、电子商务、社交网络、多媒体、生物信息学),包含结构化、半结构化、非结构化的数据类型,涵盖离线分析、交互式分析、在线服务、NoSQL这4种负载类型.目前包含14个真实数据集、3种类型的数据生成工具以及33个负载的不同软件栈实现.BigDataBench已广泛应用到学术界和工业界中,应用案例包括负载分析、体系结构设计、系统优化等.基于BigDataBench,中国信息通信研究院联合中国科学院计算技术研究所、华为等国内外知名公司和科研机构共同制定了国内首个工业标准的大数据平台性能评测标准. 展开更多
关键词 大数据 基准测试 工业标准 测试方法 数据生成 应用案例
下载PDF
Multi-layer dynamic and asymmetric convolutions
2
作者 LUO Chunjie ZHAN Jianfeng 《High Technology Letters》 EI CAS 2022年第3期227-236,共10页
Dynamic networks have become popular to enhance the model capacity while maintaining efficient inference by dynamically generating the weight based on over-parameters.They bring much more parameters and increase the d... Dynamic networks have become popular to enhance the model capacity while maintaining efficient inference by dynamically generating the weight based on over-parameters.They bring much more parameters and increase the difficulty of the training.In this paper,a multi-layer dynamic convolution(MDConv) is proposed,which scatters the over-parameters over multi-layers with fewer parameters but stronger model capacity compared with scattering horizontally;it uses the expanding form where the attention is applied to the features to facilitate the training;it uses the compact form where the attention is applied to the weights to maintain efficient inference.Moreover,a multi-layer asymmetric convolution(MAConv) is proposed,which has no extra parameters and computation cost at inference time compared with static convolution.Experimental results show that MDConv achieves better accuracy with fewer parameters and significantly facilitates the training;MAConv enhances the accuracy without any extra cost of storage or computation at inference time compared with static convolution. 展开更多
关键词 neural network dynamic network ATTENTION image classification
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部