期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于人脸关键特征提取的表情识别 被引量:6
1
作者 冉瑞生 翁稳稳 +1 位作者 王宁 彭顺顺 《计算机工程》 CAS CSCD 北大核心 2023年第2期254-262,共9页
自然场景下人脸表情由于受遮挡、光照等因素影响,以及表情局部变化细微,导致现有人脸表情识别方法准确率较低。提出一种人脸表情识别的新方法,以ResNet18为主干网络,利用残差连接模块加深网络结构,以提取更多深层次的表情特征。通过引... 自然场景下人脸表情由于受遮挡、光照等因素影响,以及表情局部变化细微,导致现有人脸表情识别方法准确率较低。提出一种人脸表情识别的新方法,以ResNet18为主干网络,利用残差连接模块加深网络结构,以提取更多深层次的表情特征。通过引入裁剪掩码模块,在训练集图像上的某个区域进行掩码,向训练模型中增加遮挡等非线性因素,提升模型在遮挡情形下的鲁棒性。分别从特征图的通道和空间两个维度提取表情的关键特征,并分配更多的权重给表情变化明显的特征图,同时抑制非表情特征。在特征图输出前加入Dropout正则化策略,通过在训练中随机失活部分神经元,达到集成多个网络模型的训练效果,提升模型泛化能力。实验结果表明,与L2-SVMs、IcRL、DLP-CNN等方法相比,该方法有效提高了表情识别准确率,在2个公开表情数据集Fer2013和RAF-DB上的识别准确率分别为74.366%和86.115%。 展开更多
关键词 注意力机制 残差网络 人脸表情识别 裁剪掩码 Dropout正则化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部