A biosensor device, built from graphene nanoribbons (GNRs) with nanopores, was designed and studied by first- principles quantum transport simulation. We have demonstrated the intrinsic transport properties of the d...A biosensor device, built from graphene nanoribbons (GNRs) with nanopores, was designed and studied by first- principles quantum transport simulation. We have demonstrated the intrinsic transport properties of the device and the effect of different nucleobases on device properties when they are located in the nanopores of GNRs. It was found that the device's current changes remarkably with the species of nucleobases, which originates from their different chemical compositions and coupling strengths with GNRs. In addition, our first-principles results clearly reveal that the distinguished ability of a device's current depends on the position of the pore to some extent. These results may present a new way to read off the nucleobases sequence of a single-stranded DNA (ssDNA) molecule by such GNRs-based device with designed nanopores展开更多
基金Project supported by the Major Research Plan from the Ministry of Science and Technology of China(Grant No.2011CB921900)the China Postdoctoral Science Foundation(Grant Nos.20090460145 and 201003009)+2 种基金the Fundamental Research Funds for the Central Universities of China(Grant No.201012200053)the Science and Technology Program of Hunan Province of China (Grant No.2010DFJ411)the Science Development Foundation of Central South University,China(Grant Nos.08SDF02 and 09SDF09)
文摘A biosensor device, built from graphene nanoribbons (GNRs) with nanopores, was designed and studied by first- principles quantum transport simulation. We have demonstrated the intrinsic transport properties of the device and the effect of different nucleobases on device properties when they are located in the nanopores of GNRs. It was found that the device's current changes remarkably with the species of nucleobases, which originates from their different chemical compositions and coupling strengths with GNRs. In addition, our first-principles results clearly reveal that the distinguished ability of a device's current depends on the position of the pore to some extent. These results may present a new way to read off the nucleobases sequence of a single-stranded DNA (ssDNA) molecule by such GNRs-based device with designed nanopores