期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
多尺度特征增强的路面裂缝检测方法 被引量:3
1
作者 翟军治 孙朝云 +2 位作者 裴莉莉 呼延菊 李伟 《交通运输工程学报》 EI CSCD 北大核心 2023年第1期291-308,共18页
针对路面裂缝检测不完整和分割出现断裂的问题,提出了一种多尺度特征增强的路面裂缝检测网络MFENet,实现端到端的路面裂缝图像检测、分类和分割处理;设计了多尺度注意力特征增强模块,建立了网络模型的上层多尺度特征通道与底层特征通道... 针对路面裂缝检测不完整和分割出现断裂的问题,提出了一种多尺度特征增强的路面裂缝检测网络MFENet,实现端到端的路面裂缝图像检测、分类和分割处理;设计了多尺度注意力特征增强模块,建立了网络模型的上层多尺度特征通道与底层特征通道权重系数之间的映射关系,以提升有效通道的特征输出;基于路面裂缝的坐标信息和像素语义信息在物理位置上的相关性,设计了多语义特征关联模块,实现不同语义信息之间的特征融合增强,并通过特征维度转换实现对路面裂缝图像的前景特征过滤;提出了一种针对深度特征强度进行量化评估的方法,用于提升模型提取特征能力的可解释性。在自采集数据集上的研究结果表明:MFENet对路面裂缝图像检测的平均精准率和平均召回率相比Mask R-CNN分别提升了4.3%和5.4%,相比基线模型RDSNet分别提升了14.6%和14.3%;MFENet对路面裂缝图像分割的平均精准率和平均召回率相比Mask R-CNN分别提升了6.6%和8.8%,相比RDSNet分别提升了8.1%和9.7%;与Mask R-CNN等主流方法相比,MFENet对不同类型路面裂缝图像的检测、分割精度最高。在公开数据集(CFD、CRACK500)上的研究结果表明:在不同场景下的数据集上,MFENet的检测、分割精度均高于Mask R-CNN等主流方法,模型的鲁棒性更强。另外与RDSNet相比,MFENet在不同数据集上的处理速度也均有所提升。 展开更多
关键词 路面裂缝检测 多尺度注意力 特征增强 多语义 可解释性 鲁棒性
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部