AUC(area under the ROC curve)优化问题的损失函数由来自不同类别的样本对构成,这使得依赖于损失函数之和的目标函数与训练样本数二次相关,不能直接使用传统在线学习方法求解.当前的在线AUC优化算法聚焦于在求解过程中避免直接计算所...AUC(area under the ROC curve)优化问题的损失函数由来自不同类别的样本对构成,这使得依赖于损失函数之和的目标函数与训练样本数二次相关,不能直接使用传统在线学习方法求解.当前的在线AUC优化算法聚焦于在求解过程中避免直接计算所有的损失函数,以减小问题的规模,实现在线AUC优化.针对以上问题提出了一种AUC优化的新目标函数,该目标函数仅与训练样本数线性相关;理论分析表明:最小化该目标函数等价于最小化由L2正则化项和最小二乘损失函数组成的AUC优化的目标函数.基于新的目标函数,提出了在线AUC优化的线性方法(linear online AUC maximization,LOAM);根据不同的分类器更新策略,给出2种算法LOAMILSC和LOAMAda.实验表明:与原有方法相比,LOAMILSC算法获得了更优的AUC性能,而对于实时或高维学习任务,LOAMAda算法更加高效.展开更多
文摘AUC(area under the ROC curve)优化问题的损失函数由来自不同类别的样本对构成,这使得依赖于损失函数之和的目标函数与训练样本数二次相关,不能直接使用传统在线学习方法求解.当前的在线AUC优化算法聚焦于在求解过程中避免直接计算所有的损失函数,以减小问题的规模,实现在线AUC优化.针对以上问题提出了一种AUC优化的新目标函数,该目标函数仅与训练样本数线性相关;理论分析表明:最小化该目标函数等价于最小化由L2正则化项和最小二乘损失函数组成的AUC优化的目标函数.基于新的目标函数,提出了在线AUC优化的线性方法(linear online AUC maximization,LOAM);根据不同的分类器更新策略,给出2种算法LOAMILSC和LOAMAda.实验表明:与原有方法相比,LOAMILSC算法获得了更优的AUC性能,而对于实时或高维学习任务,LOAMAda算法更加高效.