视频内容自动分析领域中,关键的挑战在于如何识别重要对象和如何建模对象之间的时空关系.本文基于感知概念(Perception Concepts,简称PCs)和有限状态机(Finite State Machines,简称FSMs)提出一种语义内容分析模型自动描述和探测体育视...视频内容自动分析领域中,关键的挑战在于如何识别重要对象和如何建模对象之间的时空关系.本文基于感知概念(Perception Concepts,简称PCs)和有限状态机(Finite State Machines,简称FSMs)提出一种语义内容分析模型自动描述和探测体育视频中有意义的语义内容.根据体育视频中可识别的特征元素,定义PCs来表示视频中重要的语义模式;设计PC-FSM模型来描述PCs间的时空关系;采用一个图匹配方法自动探测视频中的高层语义.本文提出的方法使用户能够根据其自身的兴趣和知识设计体育视频的查询描述,并将语义内容探测问题转换为图匹配问题.实验结果验证了本文提出的方法的有效性.展开更多
文摘视频内容自动分析领域中,关键的挑战在于如何识别重要对象和如何建模对象之间的时空关系.本文基于感知概念(Perception Concepts,简称PCs)和有限状态机(Finite State Machines,简称FSMs)提出一种语义内容分析模型自动描述和探测体育视频中有意义的语义内容.根据体育视频中可识别的特征元素,定义PCs来表示视频中重要的语义模式;设计PC-FSM模型来描述PCs间的时空关系;采用一个图匹配方法自动探测视频中的高层语义.本文提出的方法使用户能够根据其自身的兴趣和知识设计体育视频的查询描述,并将语义内容探测问题转换为图匹配问题.实验结果验证了本文提出的方法的有效性.