期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
高斯Wasserstein距离改进轻量YOLOv7模型的遥感影像道路交叉口检测
1
作者 康传利 张思瑶 +4 位作者 李玄皓 林梓涛 耿崇铭 张赛 王世伟 《科学技术与工程》 北大核心 2024年第9期3533-3542,共10页
YOLOv7是目前目标检测任务中性能较优的模型,但在处理遥感影像中的道路交叉口时,出现目标背景复杂、先验框定位误差以及模型训练参数量增多的问题。针对复杂场景的道路交叉口提出一种结合归一化高斯Wasserstein距离与轻量级YOLOv7的遥... YOLOv7是目前目标检测任务中性能较优的模型,但在处理遥感影像中的道路交叉口时,出现目标背景复杂、先验框定位误差以及模型训练参数量增多的问题。针对复杂场景的道路交叉口提出一种结合归一化高斯Wasserstein距离与轻量级YOLOv7的遥感影像道路交叉口检测模型。首先,使用归一化高斯Wasserstein距离与CIoU(complete-IoU)进行先验框定位损失函数的改进,以提高网络模型对于目标尺寸的鲁棒性;其次,在加强网络特征提取模块中加入三维注意力机制,实现网络处理的特征优化;最后,在主干特征提取网络与加强特征提取网络中加入改进的FasterNet模块,提升网络模型的训练速度,减少了模型训练的参数。实验结果表明,改进后的YOLOv7网络模型相比原网络模型,漏检测情况得到明显改善,准确率(precision,P)、召回率(recall,R)、平均准确率(average precision,AP)和F_(1)分别提升了6.2%、4.9%、6.7%、6.5%,对道路交叉口的检测效果优于原网络模型。其成果对不同环境的影像具有较强适应能力,为道路交叉口检测的发展提供了参考。 展开更多
关键词 道路交叉口 目标检测 YOLOv7 归一化高斯Wasserstein距离 注意力机制 FasterNet
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部