The comparison of networks with different orders strongly depends on the stability analysis of graph features in evolving systems. In this paper, we rigorously investigate the stability of the weighted spectral distri...The comparison of networks with different orders strongly depends on the stability analysis of graph features in evolving systems. In this paper, we rigorously investigate the stability of the weighted spectral distribution(i.e., a spectral graph feature) as the network order increases. First, we use deterministic scale-free networks generated by a pseudo treelike model to derive the precise formula of the spectral feature, and then analyze the stability of the spectral feature based on the precise formula. Except for the scale-free feature, the pseudo tree-like model exhibits the hierarchical and small-world structures of complex networks. The stability analysis is useful for the classification of networks with different orders and the similarity analysis of networks that may belong to the same evolving system.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61402485,61303061,and 71201169)
文摘The comparison of networks with different orders strongly depends on the stability analysis of graph features in evolving systems. In this paper, we rigorously investigate the stability of the weighted spectral distribution(i.e., a spectral graph feature) as the network order increases. First, we use deterministic scale-free networks generated by a pseudo treelike model to derive the precise formula of the spectral feature, and then analyze the stability of the spectral feature based on the precise formula. Except for the scale-free feature, the pseudo tree-like model exhibits the hierarchical and small-world structures of complex networks. The stability analysis is useful for the classification of networks with different orders and the similarity analysis of networks that may belong to the same evolving system.