期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于K-CV参数优化支持向量机的LIBS燃煤热值定量分析
被引量:
19
1
作者
董美蓉
韦丽萍
+6 位作者
陆继东
黎文兵
陆盛资
黄健伟
李诗诗
骆发胜
聂嘉朗
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2019年第7期2202-2209,共8页
热值是煤质特性的重要参数之一,很大程度上影响着燃煤锅炉的运行。为了克服传统检测方法所存在的问题,将激光诱导击穿光谱(LIBS)应用于燃煤热值的定量分析。煤的结构复杂,所含的元素种类众多,包括了主量元素、次量元素和痕量元素,致使煤...
热值是煤质特性的重要参数之一,很大程度上影响着燃煤锅炉的运行。为了克服传统检测方法所存在的问题,将激光诱导击穿光谱(LIBS)应用于燃煤热值的定量分析。煤的结构复杂,所含的元素种类众多,包括了主量元素、次量元素和痕量元素,致使煤的LIBS光谱信息复杂。如何有效提取LIBS光谱信息,实现准确的定量化测量是LIBS在煤特性检测中发挥作用的前提和基础。近年来,随着人工智能技术的发展,相关的分析技术也开始应用于煤的工业指标分析和热值预测中。为实现煤样品中LIBS光谱信息的有效提取,同时为克服常规的分析方法易出现的过渡拟合、收敛性不好等问题,提出采用结合K-fold Cross Validation(K-CV)参数优化的支持向量机(SVM)回归方法,实现LIBS定量分析煤中的热值。SVM方法是结构风险最小化的近似实现,可用于模式分类和非线性回归。为了得到有效的LIBS分析模型,实验选用44种电厂常用的热值含量不同的煤样作为实验对象,选择其中33个作为训练集,剩余11个为测试集。利用搭建的LIBS实验系统获取所选煤样品的等离子体发射光谱数据,首先分析了SVM热值回归模型的参数-惩罚因子C、核函数参数g与模型精度的关联,确定C和g最佳取值范围,然后分别建立了基于LIBS全谱和某些元素(非金属元素和金属元素)特征光谱的SVM回归模型。利用训练集光谱数据,结合K-CV法得到热值SVM回归模型的最优参数C和g的值,建立基于SVM最优参数的煤热值定量分析模型。然后将测试集的光谱数据作为输入量用于测试所建立模型的可靠性,得到分别采用全谱、非金属元素特征光谱、非金属与金属元素特征谱相结合的热值定量分析模型,其决定系数R^2均达到0.99以上,均方误差分别为0.12,0.17和0.06(MJ·kg^-1)^2,预测平均相对偏差分别为1.2%,1.23%和0.69%。结果表明:基于K-CV参数优化SVM回归方法可用于LIBS技术实现燃煤热值的定量分析,且可得到较高的分析精确度和准确度;同时通过对比选用不同的光谱特征的定量分析模型可知,采用非金属与金属元素的特征光谱所建立的基于K-CV参数优化SVM的热值定量模型,能够有效提高LIBS应用于快速检测煤热值的精度和准确度,实现煤热值的准确预测。
展开更多
关键词
煤
热值
激光诱导击穿光谱
支持向量机
定量
K-CV
下载PDF
职称材料
题名
基于K-CV参数优化支持向量机的LIBS燃煤热值定量分析
被引量:
19
1
作者
董美蓉
韦丽萍
陆继东
黎文兵
陆盛资
黄健伟
李诗诗
骆发胜
聂嘉朗
机构
华南理工大学电力学院
广东省能源高效低污染转化工程技术研究中心
广东省能源高效清洁利用重点实验室
出处
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2019年第7期2202-2209,共8页
基金
国家自然科学基金项目(51476061,51406059)
广东省自然科学基金重点项目(2017B030311009)
中央高校基本科研业务费专项资金(华南理工大学)项目(2017ZD027)资助
文摘
热值是煤质特性的重要参数之一,很大程度上影响着燃煤锅炉的运行。为了克服传统检测方法所存在的问题,将激光诱导击穿光谱(LIBS)应用于燃煤热值的定量分析。煤的结构复杂,所含的元素种类众多,包括了主量元素、次量元素和痕量元素,致使煤的LIBS光谱信息复杂。如何有效提取LIBS光谱信息,实现准确的定量化测量是LIBS在煤特性检测中发挥作用的前提和基础。近年来,随着人工智能技术的发展,相关的分析技术也开始应用于煤的工业指标分析和热值预测中。为实现煤样品中LIBS光谱信息的有效提取,同时为克服常规的分析方法易出现的过渡拟合、收敛性不好等问题,提出采用结合K-fold Cross Validation(K-CV)参数优化的支持向量机(SVM)回归方法,实现LIBS定量分析煤中的热值。SVM方法是结构风险最小化的近似实现,可用于模式分类和非线性回归。为了得到有效的LIBS分析模型,实验选用44种电厂常用的热值含量不同的煤样作为实验对象,选择其中33个作为训练集,剩余11个为测试集。利用搭建的LIBS实验系统获取所选煤样品的等离子体发射光谱数据,首先分析了SVM热值回归模型的参数-惩罚因子C、核函数参数g与模型精度的关联,确定C和g最佳取值范围,然后分别建立了基于LIBS全谱和某些元素(非金属元素和金属元素)特征光谱的SVM回归模型。利用训练集光谱数据,结合K-CV法得到热值SVM回归模型的最优参数C和g的值,建立基于SVM最优参数的煤热值定量分析模型。然后将测试集的光谱数据作为输入量用于测试所建立模型的可靠性,得到分别采用全谱、非金属元素特征光谱、非金属与金属元素特征谱相结合的热值定量分析模型,其决定系数R^2均达到0.99以上,均方误差分别为0.12,0.17和0.06(MJ·kg^-1)^2,预测平均相对偏差分别为1.2%,1.23%和0.69%。结果表明:基于K-CV参数优化SVM回归方法可用于LIBS技术实现燃煤热值的定量分析,且可得到较高的分析精确度和准确度;同时通过对比选用不同的光谱特征的定量分析模型可知,采用非金属与金属元素的特征光谱所建立的基于K-CV参数优化SVM的热值定量模型,能够有效提高LIBS应用于快速检测煤热值的精度和准确度,实现煤热值的准确预测。
关键词
煤
热值
激光诱导击穿光谱
支持向量机
定量
K-CV
Keywords
Coal
Heat value
Laser-induced breakdown spectroscopy
Support vector machine
Quantitative K-CV
分类号
O433.1 [机械工程—光学工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于K-CV参数优化支持向量机的LIBS燃煤热值定量分析
董美蓉
韦丽萍
陆继东
黎文兵
陆盛资
黄健伟
李诗诗
骆发胜
聂嘉朗
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2019
19
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部