为提高苹果生产领域实体识别的准确性,提出一种新的Transformer优化模型。首先,为解决苹果生产数据集的缺失,基于苹果栽培领域园艺专家的知识经验,创建以苹果病虫害为主的产业数据集。通过字向量与词向量的拼接,提高文本语义表征的准确...为提高苹果生产领域实体识别的准确性,提出一种新的Transformer优化模型。首先,为解决苹果生产数据集的缺失,基于苹果栽培领域园艺专家的知识经验,创建以苹果病虫害为主的产业数据集。通过字向量与词向量的拼接,提高文本语义表征的准确性;随后,为防止位置信息缺失,引入具有方向和距离感知的注意力机制,平均集成BiLSTM的上下文长距离依赖特征;最后,结合条件随机场(Conditional random fields, CRF)约束上下文标注结果,最终得到Transformer优化模型。实验结果表明,所提方法在苹果病虫命名实体识别中的F1值可达92.66%,可为农业命名实体的准确智能识别提供技术手段。展开更多
文摘为提高苹果生产领域实体识别的准确性,提出一种新的Transformer优化模型。首先,为解决苹果生产数据集的缺失,基于苹果栽培领域园艺专家的知识经验,创建以苹果病虫害为主的产业数据集。通过字向量与词向量的拼接,提高文本语义表征的准确性;随后,为防止位置信息缺失,引入具有方向和距离感知的注意力机制,平均集成BiLSTM的上下文长距离依赖特征;最后,结合条件随机场(Conditional random fields, CRF)约束上下文标注结果,最终得到Transformer优化模型。实验结果表明,所提方法在苹果病虫命名实体识别中的F1值可达92.66%,可为农业命名实体的准确智能识别提供技术手段。