本文以聚(3,4-乙撑二氧噻吩)/碳纳米管(PEDOT/CNT)复合材料为载体,将金属铂分散其表面,以提高铂催化剂的电催化性能以及抗中毒性和稳定性。分别采用红外光谱和扫描电子显微镜来对材料进行结构表征;通过循环伏安法(CV)与计时电流法(CA)...本文以聚(3,4-乙撑二氧噻吩)/碳纳米管(PEDOT/CNT)复合材料为载体,将金属铂分散其表面,以提高铂催化剂的电催化性能以及抗中毒性和稳定性。分别采用红外光谱和扫描电子显微镜来对材料进行结构表征;通过循环伏安法(CV)与计时电流法(CA)对复合材料在甲醇和乙醇中的催化氧化性能进行探究。结果表明,与CNT/Pt催化剂相比,PEDOT/CNT/Pt催化剂具有更好的电催化甲醇、乙醇的能力,其电化学活性面积为168.19 m^(2)·g^(-1),与CNT/Pt催化剂(29.37 m^(2)·g^(-1))相比,其电化学活性得到了极大的提高;其在甲醇、乙醇溶液中的质量活性电流密度分别为1134 m A·mgPt^(-1)、999 mA·mg^(-1),远高于CNT/Pt催化剂(281 m A·mg^(-1)、235 mA·mg^(-1))。展开更多
文摘本文以聚(3,4-乙撑二氧噻吩)/碳纳米管(PEDOT/CNT)复合材料为载体,将金属铂分散其表面,以提高铂催化剂的电催化性能以及抗中毒性和稳定性。分别采用红外光谱和扫描电子显微镜来对材料进行结构表征;通过循环伏安法(CV)与计时电流法(CA)对复合材料在甲醇和乙醇中的催化氧化性能进行探究。结果表明,与CNT/Pt催化剂相比,PEDOT/CNT/Pt催化剂具有更好的电催化甲醇、乙醇的能力,其电化学活性面积为168.19 m^(2)·g^(-1),与CNT/Pt催化剂(29.37 m^(2)·g^(-1))相比,其电化学活性得到了极大的提高;其在甲醇、乙醇溶液中的质量活性电流密度分别为1134 m A·mgPt^(-1)、999 mA·mg^(-1),远高于CNT/Pt催化剂(281 m A·mg^(-1)、235 mA·mg^(-1))。