期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOX的安全帽佩戴实时检测 被引量:18
1
作者 丁田 陈向阳 +1 位作者 周强 肖浩樑 《电子测量技术》 北大核心 2022年第17期72-78,共7页
在建筑行业中,因未佩戴安全帽而导致的安全事故占比较大。针对安全帽检测中存在的干扰性强、小目标准确率低等问题,提出了一种基于YOLOX的改进算法。首先,在加强特征提取网络中加入ECA-Net注意力机制,进行跨通道交互,根据生成的对应通... 在建筑行业中,因未佩戴安全帽而导致的安全事故占比较大。针对安全帽检测中存在的干扰性强、小目标准确率低等问题,提出了一种基于YOLOX的改进算法。首先,在加强特征提取网络中加入ECA-Net注意力机制,进行跨通道交互,根据生成的对应通道权重值,抑制干扰信息,加强模型对目标特征的关注度,再将重校准后的特征图进行更深度地特征融合,提高目标特征的表达能力。其次,使用CIoU来计算损失,将两框中心点距离和长宽比考虑进惩罚项,不断调整更新损失函数,加快模型收敛速度。最后,构建了一个真实施工场景下的小目标安全帽数据集。实验结果表明,改进后的算法mAP达91.7%,比原YOLOX算高出1.2%,对已佩戴安全帽的工人检测平均精度达93.9%,对未佩戴安全帽的检测平均精度达89.5%,检测速度达到71.9帧/s,保证安全帽佩戴情况实时检测的同时有较高准确率。 展开更多
关键词 YOLOX 注意力机制 安全帽检测 深度学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部