The irreducibility and aperiodicity (primitivity)are two basic notions in the theory of nonnegative matrices. As we know, for a nonnegative matrix, there exist no feasible algorithms for judging them, especially for a...The irreducibility and aperiodicity (primitivity)are two basic notions in the theory of nonnegative matrices. As we know, for a nonnegative matrix, there exist no feasible algorithms for judging them, especially for aperiodicity. Usually, for a k×k nonnegative matrix, one can form an associated directed graph which has k vertices and whose directed展开更多
基金Project supported by the National Natural Science Foundation of China and National Educational Fund of China
文摘The irreducibility and aperiodicity (primitivity)are two basic notions in the theory of nonnegative matrices. As we know, for a nonnegative matrix, there exist no feasible algorithms for judging them, especially for aperiodicity. Usually, for a k×k nonnegative matrix, one can form an associated directed graph which has k vertices and whose directed