期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于MapReduce框架的分布式软K段主曲线算法 被引量:1
1
作者 胡作梁 张红云 《数据采集与处理》 CSCD 北大核心 2017年第3期507-515,共9页
传统的主曲线算法在小规模数据集上能获得良好的效果,但单节点的计算和存储能力都不能满足海量数据主曲线的提取要求,而算法分布式并行化是目前解决该类问题最有效的途径之一。本文提出基于MapReduce框架的分布式软K段主曲线算法(Distri... 传统的主曲线算法在小规模数据集上能获得良好的效果,但单节点的计算和存储能力都不能满足海量数据主曲线的提取要求,而算法分布式并行化是目前解决该类问题最有效的途径之一。本文提出基于MapReduce框架的分布式软K段主曲线算法(Distributed soft k-segments principal curve,DisSKPC)。首先,基于分布式K-Means算法,采用递归粒化方法对数据集进行粒化,以确定粒的大小并保证粒中数据的关联性。然后调用软K段主曲线算法计算每个粒数据的局部主成分线段,并提出用噪声方差来消除在高密集、高曲率的数据区域可能产生的过拟合线段。最后借助哈密顿路径和贪婪算法连接这些局部主成分线段,形成一条通过数据云中间的最佳曲线。实验结果表明,本文所提出的DisSKPC算法具有良好的可行性和扩展性。 展开更多
关键词 分布式并行化 主曲线 数据粒化 MAPREDUCE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部