局域均值分解(Local mean decomposition,LMD)的主要思想是把一个时间序列的信号,分解成不同尺度的包络信号和纯调频信号,然后获得信号的时频分布。LMD算法用极值点来定义局部均值函数和局域包络函数,然后用滑动平均来平滑均值和包络函...局域均值分解(Local mean decomposition,LMD)的主要思想是把一个时间序列的信号,分解成不同尺度的包络信号和纯调频信号,然后获得信号的时频分布。LMD算法用极值点来定义局部均值函数和局域包络函数,然后用滑动平均来平滑均值和包络函数,针对用滑动平均平滑均值和包络函数误差较大的缺点,提出了采用三次样条对上、下极值点分别插值求得上下包络线,然后由上下包络线的平均获得局部平均函数,由上下包络线相减的绝对值获得局部包络的方法。通过对非线性和实例振动信号的实验研究表明,基于样条的LMD方法的分析精度比LMD方法高。展开更多
文摘局域均值分解(Local mean decomposition,LMD)的主要思想是把一个时间序列的信号,分解成不同尺度的包络信号和纯调频信号,然后获得信号的时频分布。LMD算法用极值点来定义局部均值函数和局域包络函数,然后用滑动平均来平滑均值和包络函数,针对用滑动平均平滑均值和包络函数误差较大的缺点,提出了采用三次样条对上、下极值点分别插值求得上下包络线,然后由上下包络线的平均获得局部平均函数,由上下包络线相减的绝对值获得局部包络的方法。通过对非线性和实例振动信号的实验研究表明,基于样条的LMD方法的分析精度比LMD方法高。