期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
采用格拉姆角场-卷积神经网络-时序卷积网络混合模型的锂离子电池健康状态估计
1
作者 赵扬 耿莉敏 +5 位作者 胡循泉 胡兵 巫春玲 张文博 山世玉 陈昊 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第11期27-38,共12页
针对现有电池健康状态(SOH)估计存在估计精度低、时序特征捕捉不足的问题,提出了一种格拉姆角场-卷积神经网络-时序卷积网络(GAF-CNN-TCN)混合模型。利用GAF算法将不同长度的容量增量(IC)曲线转换成图像数据,并采用卷积神经网络从中提... 针对现有电池健康状态(SOH)估计存在估计精度低、时序特征捕捉不足的问题,提出了一种格拉姆角场-卷积神经网络-时序卷积网络(GAF-CNN-TCN)混合模型。利用GAF算法将不同长度的容量增量(IC)曲线转换成图像数据,并采用卷积神经网络从中提取特征;提出一种特征融合网络,将二维卷积神经网络从图像中提取的图片特征与一维卷积神经网络从IC序列中提取的时序特征进行融合;将提取的综合特征输入时序卷积网络模型中进行训练,实现了SOH的准确估计。利用美国国家航空航天局和牛津大学的锂离子电池数据集进行模型验证,结果表明:相较于长短期记忆(LSTM)模型,GAF-CNN-TCN混合模型输出的SOH与真实SOH之间的平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和均方根误差(RMSE)分别降低了85.65%、86.12%、84.0%;相较于CNN-LSTM模型,所提模型的MAE、MAPE和RMSE分别降低了83.24%、83.75%、82.27%;相较于TCN模型,所提模型的MAE、MAPE和RMSE分别降低了76.92%、77.19%、76.01%。 展开更多
关键词 锂离子电池 电池健康状态 格拉姆角场 卷积神经网络 时序卷积网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部