It is significant to develop a heterogeneous integration technology to promote the application of two-dimensional(2D)materials in silicon roadmap. In this paper, we reported a field-effect WSe_(2)/Si heterojunction di...It is significant to develop a heterogeneous integration technology to promote the application of two-dimensional(2D)materials in silicon roadmap. In this paper, we reported a field-effect WSe_(2)/Si heterojunction diode based on ambipolar 2D WSe_(2) and silicon on insulator(SOI). Our results indicate that the device exhibits a p–n diode behavior with a rectifying ratio of ~300 and an ideality factor of 1.37. As a photodetector, it has optoelectronic properties with a response time of 0.13 ms, responsivity of 0.045 A/W, detectivity of 4.5×10~(10) Jones and external quantum efficiency(EQE) of 8.9 %.Due to the ambipolar behavior of the WSe_(2), the rectifying and optoelectronic properties of the heterojunction diode can be modulated by the gate electrical field, enabling various potential applications such as logic optoelectronic devices and neuromorphic optoelectronic devices for in-sensor computing circuits. Thanks to the process based on the mature SOI technique, our field-effect heterojunction diode should have obvious advantages in device isolation and integration.展开更多
基金Project supported by the Ministry of Science and Technology of China (Grant No.2018YFE0118300)the National Key Research and Development Program of China (Grant No.2018YFA0703703)+1 种基金State Key Laboratory of ASIC&System (Grant No.2021MS003)Science and Technology Commission of Shanghai Municipality,China (Grant No.20501130100)。
文摘It is significant to develop a heterogeneous integration technology to promote the application of two-dimensional(2D)materials in silicon roadmap. In this paper, we reported a field-effect WSe_(2)/Si heterojunction diode based on ambipolar 2D WSe_(2) and silicon on insulator(SOI). Our results indicate that the device exhibits a p–n diode behavior with a rectifying ratio of ~300 and an ideality factor of 1.37. As a photodetector, it has optoelectronic properties with a response time of 0.13 ms, responsivity of 0.045 A/W, detectivity of 4.5×10~(10) Jones and external quantum efficiency(EQE) of 8.9 %.Due to the ambipolar behavior of the WSe_(2), the rectifying and optoelectronic properties of the heterojunction diode can be modulated by the gate electrical field, enabling various potential applications such as logic optoelectronic devices and neuromorphic optoelectronic devices for in-sensor computing circuits. Thanks to the process based on the mature SOI technique, our field-effect heterojunction diode should have obvious advantages in device isolation and integration.