布匹瑕疵检测是纺织业质量管理的重要环节.在嵌入式设备上实现准确、快速的布匹瑕疵检测能有效降低成本,因而价值巨大.考虑到实际生产中花色布匹瑕疵具有背景复杂、数量差异大、极端长宽比和小瑕疵占比高等结构特性,提出一种基于轻量级...布匹瑕疵检测是纺织业质量管理的重要环节.在嵌入式设备上实现准确、快速的布匹瑕疵检测能有效降低成本,因而价值巨大.考虑到实际生产中花色布匹瑕疵具有背景复杂、数量差异大、极端长宽比和小瑕疵占比高等结构特性,提出一种基于轻量级模型的花色布匹瑕疵检测方法并将其部署在嵌入式设备Raspberry Pi 4B上.首先在一阶段目标检测网络YOLO的基础上用轻量级特征提取网络ShuffleNetV2提取花色布匹瑕疵的特征,以减少网络结构复杂度及参数量,提升检测速度;其次是检测头的解耦合,将分类与定位任务分离,以提升模型收敛速度;此外引入CIoU作为瑕疵位置回归损失函数,提高瑕疵定位准确性.实验结果表明,本文算法在Raspberry Pi 4B上可达8.6 FPS的检测速度,可满足纺织工业应用需求.展开更多
文摘布匹瑕疵检测是纺织业质量管理的重要环节.在嵌入式设备上实现准确、快速的布匹瑕疵检测能有效降低成本,因而价值巨大.考虑到实际生产中花色布匹瑕疵具有背景复杂、数量差异大、极端长宽比和小瑕疵占比高等结构特性,提出一种基于轻量级模型的花色布匹瑕疵检测方法并将其部署在嵌入式设备Raspberry Pi 4B上.首先在一阶段目标检测网络YOLO的基础上用轻量级特征提取网络ShuffleNetV2提取花色布匹瑕疵的特征,以减少网络结构复杂度及参数量,提升检测速度;其次是检测头的解耦合,将分类与定位任务分离,以提升模型收敛速度;此外引入CIoU作为瑕疵位置回归损失函数,提高瑕疵定位准确性.实验结果表明,本文算法在Raspberry Pi 4B上可达8.6 FPS的检测速度,可满足纺织工业应用需求.