期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于自注意力机制的蛋白质-RNA相互作用预测方法
1
作者 李大伟 胡春玲 +3 位作者 邵鸣义 朱冠雨 胡瑞捷 胡昭龙 《合肥大学学报》 2024年第5期102-109,共8页
尽管已有利用lncRNA和蛋白质的信息来预测lncRPI的方法,但仅利用蛋白质和RNA的序列特征来进行预测相互作用仍然是一个挑战,并且模型预测的准确性有待提高。因此,本文提出了一种融合卷积神经网路和自注意力机制的预测模型LPI-Attention(L... 尽管已有利用lncRNA和蛋白质的信息来预测lncRPI的方法,但仅利用蛋白质和RNA的序列特征来进行预测相互作用仍然是一个挑战,并且模型预测的准确性有待提高。因此,本文提出了一种融合卷积神经网路和自注意力机制的预测模型LPI-Attention(Long non-coding RNA based on self-attention mechanism),该模型采用了k-mer方法来编码RNA和蛋白质序列特征作为模型的输入,这种方法可以同时考虑两种序列的信息,从而提高了预测的准确性。此外,在密集型卷积模块中,使用两种尺度的特征提取,更好地捕捉局部和全局的信息。最后,将得到的特征输入自注意力循环网络层中,更好地处理序列数据的长期依赖关系,将得到的RNA、蛋白质二者特征信息融合成新的特征放入全连接层进行预测。实验结果表明,该模型不仅扩展了生物特征预测领域,而且可以学习RNA序列与蛋白质序列之间更多的相互作用关系,在预测RPIs方面表现优于大多数同类方法,在数据集RPIs1446、RPIs1807、RPIs488上的准确率分别达到91.7%、96.6%、91.6%。 展开更多
关键词 蛋白质-RNA相互作用 序列特征 自注意力机制 卷积神经网络 特征融合
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部