The novel phenomena in nanophotonic materials, such as the angle-dependent reflection and negative refraction effect, are closely related to the photonic dispersions EepT. EepT describes the relation between energy E ...The novel phenomena in nanophotonic materials, such as the angle-dependent reflection and negative refraction effect, are closely related to the photonic dispersions EepT. EepT describes the relation between energy E and momentum p of photonic eigenmodes, and essentially determines the optical properties of materials. As EepT is defined in momentum space(k-space), the experimental method to detect the energy distribution, that is the spectrum, in a momentum-resolved manner is highly required. In this review, the momentum-space imaging spectroscopy(MSIS) system is presented, which can directly study the spectral information in momentum space. Using the MSIS system, the photonic dispersion can be captured in one shot with high energy and momentum resolution. From the experimental momentumresolved spectrum data, other key features of photonic eigenmodes, such as quality factors and polarization states, can also be extracted through the post-processing algorithm based on the coupled mode theory. In addition, the interference configurations of the MSIS system enable the measurement of coherence properties and phase information of nanophotonic materials, which is important for the study of light-matter interaction and beam shaping with nanostructures. The MSIS system can give the comprehensive information of nanophotonic materials, and is greatly useful for the study of novel photonic phenomena and the development of nanophotonic technologies.展开更多
基金supported by the National Key Basic Research Program of China(2016YFA0301103,2016YFA0302000 and 2018YFA0306201)the National Natural Science Foundation of China(11774063,11727811,and 91963212)supported by the Science and Technology Commission of Shanghai Municipality(19XD1434600,2019SHZDZX01 and 19DZ2253000)。
文摘The novel phenomena in nanophotonic materials, such as the angle-dependent reflection and negative refraction effect, are closely related to the photonic dispersions EepT. EepT describes the relation between energy E and momentum p of photonic eigenmodes, and essentially determines the optical properties of materials. As EepT is defined in momentum space(k-space), the experimental method to detect the energy distribution, that is the spectrum, in a momentum-resolved manner is highly required. In this review, the momentum-space imaging spectroscopy(MSIS) system is presented, which can directly study the spectral information in momentum space. Using the MSIS system, the photonic dispersion can be captured in one shot with high energy and momentum resolution. From the experimental momentumresolved spectrum data, other key features of photonic eigenmodes, such as quality factors and polarization states, can also be extracted through the post-processing algorithm based on the coupled mode theory. In addition, the interference configurations of the MSIS system enable the measurement of coherence properties and phase information of nanophotonic materials, which is important for the study of light-matter interaction and beam shaping with nanostructures. The MSIS system can give the comprehensive information of nanophotonic materials, and is greatly useful for the study of novel photonic phenomena and the development of nanophotonic technologies.