期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度学习的学生课堂异常行为检测与分析系统
被引量:
31
1
作者
廖鹏
刘宸铭
+3 位作者
苏航
李启芳
韩延巾
胡
正平
(
指导
)
《电子世界》
2018年第8期97-98,共2页
视频分析技术已越来越多的用于视频监控等领域,为了对学生听课状况进行有效的监督和管理,项目构建了一个检测、统计学生课堂异常行为的辅助教学管理系统。通过基于VGG预训练网络模型迁移学习,来提取学生课堂异常行为特征,实现对玩手机...
视频分析技术已越来越多的用于视频监控等领域,为了对学生听课状况进行有效的监督和管理,项目构建了一个检测、统计学生课堂异常行为的辅助教学管理系统。通过基于VGG预训练网络模型迁移学习,来提取学生课堂异常行为特征,实现对玩手机、睡觉等异常行为的检测分析。系统在测试集上的平均识别正确率达到了85.2775%,其中识别睡觉95.1510%,识别正常90.5490%,识别玩手机70.1334%。基于背景差分提取目标区域,使系统可以识别视频中多个目标;通过连续的识别和统计,界定学生异常行为,最后自动生成成课堂行为分析报告。结果表明,卷积神经网络能够对目标特征进行特征提取,适应复杂的环境。该方法可实现对学生课堂异常行为的准确监测,具有适用性强、抗干扰的特点。
展开更多
关键词
辅助教学管理系统
异常行为分析
卷积神经网络
模式分类
下载PDF
职称材料
题名
基于深度学习的学生课堂异常行为检测与分析系统
被引量:
31
1
作者
廖鹏
刘宸铭
苏航
李启芳
韩延巾
胡
正平
(
指导
)
机构
燕山大学信息科学与工程学院
中国电子学会
中国图像图形学会
出处
《电子世界》
2018年第8期97-98,共2页
基金
2017年燕山大学“大学生创新创业训练计划”国家级立项(项目编号:201710216019)
文摘
视频分析技术已越来越多的用于视频监控等领域,为了对学生听课状况进行有效的监督和管理,项目构建了一个检测、统计学生课堂异常行为的辅助教学管理系统。通过基于VGG预训练网络模型迁移学习,来提取学生课堂异常行为特征,实现对玩手机、睡觉等异常行为的检测分析。系统在测试集上的平均识别正确率达到了85.2775%,其中识别睡觉95.1510%,识别正常90.5490%,识别玩手机70.1334%。基于背景差分提取目标区域,使系统可以识别视频中多个目标;通过连续的识别和统计,界定学生异常行为,最后自动生成成课堂行为分析报告。结果表明,卷积神经网络能够对目标特征进行特征提取,适应复杂的环境。该方法可实现对学生课堂异常行为的准确监测,具有适用性强、抗干扰的特点。
关键词
辅助教学管理系统
异常行为分析
卷积神经网络
模式分类
分类号
TP278 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度学习的学生课堂异常行为检测与分析系统
廖鹏
刘宸铭
苏航
李启芳
韩延巾
胡
正平
(
指导
)
《电子世界》
2018
31
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部