为满足对小目标无人机检测高精度、实时性的要求,提出一种基于YOLOv(You Only Look Once version) 5s的轻量化小目标无人机实时检测改进算法。采用MobileNetV3代替原有的骨干网络,以提取小目标无人机的浅层特征信息;在网络中添加轻量级...为满足对小目标无人机检测高精度、实时性的要求,提出一种基于YOLOv(You Only Look Once version) 5s的轻量化小目标无人机实时检测改进算法。采用MobileNetV3代替原有的骨干网络,以提取小目标无人机的浅层特征信息;在网络中添加轻量级卷积注意力模块,以提取小目标无人机的深层特征信息;在原有3个检测层基础上增加小目标检测层,以提高对小目标无人机的关注度。实验结果表明,与经典YOLOv5s检测算法相比,改进算法的参数量下降30.5%,权重减少5.3 MB,实现了算法的轻量化。另外,网络精度提高3.16%,网络召回率提高1.14%,帧率增加了8。改进算法的检测精度与检测速率均得到提升,并且有效地改善了小目标无人机的漏检问题。展开更多
文摘为满足对小目标无人机检测高精度、实时性的要求,提出一种基于YOLOv(You Only Look Once version) 5s的轻量化小目标无人机实时检测改进算法。采用MobileNetV3代替原有的骨干网络,以提取小目标无人机的浅层特征信息;在网络中添加轻量级卷积注意力模块,以提取小目标无人机的深层特征信息;在原有3个检测层基础上增加小目标检测层,以提高对小目标无人机的关注度。实验结果表明,与经典YOLOv5s检测算法相比,改进算法的参数量下降30.5%,权重减少5.3 MB,实现了算法的轻量化。另外,网络精度提高3.16%,网络召回率提高1.14%,帧率增加了8。改进算法的检测精度与检测速率均得到提升,并且有效地改善了小目标无人机的漏检问题。