期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
多目标跟踪中一种改进的高斯混合PHD滤波算法
被引量:
4
1
作者
胡玮静
陈秀宏
《计算机工程与应用》
CSCD
北大核心
2016年第2期244-249,255,共7页
高斯混合概率假设密度(GM-PHD)滤波是一种杂波环境下多目标跟踪问题算法,针对算法中存在的目标漏检和距离相近时精度下降的问题,提出一种改进的高斯混合PHD滤波算法。该算法在高斯混合框架下通过修正PHD递归方程,有效地解决了漏检引起...
高斯混合概率假设密度(GM-PHD)滤波是一种杂波环境下多目标跟踪问题算法,针对算法中存在的目标漏检和距离相近时精度下降的问题,提出一种改进的高斯混合PHD滤波算法。该算法在高斯混合框架下通过修正PHD递归方程,有效地解决了漏检引起的有用信息丢失问题;利用权值判断高斯分量是否用于提取目标状态,避免了具有较高权值的高斯分量合并在一起,从而改善目标相互接近时的跟踪性能。仿真实验表明,改进算法在滤波精度和目标数估计方面均优于传统的GM-PHD算法。
展开更多
关键词
多目标跟踪
高斯混合概率假设密度
漏检
分量合并
下载PDF
职称材料
题名
多目标跟踪中一种改进的高斯混合PHD滤波算法
被引量:
4
1
作者
胡玮静
陈秀宏
机构
江南大学数字媒体学院
出处
《计算机工程与应用》
CSCD
北大核心
2016年第2期244-249,255,共7页
基金
国家自然科学基金(No.61373055)
文摘
高斯混合概率假设密度(GM-PHD)滤波是一种杂波环境下多目标跟踪问题算法,针对算法中存在的目标漏检和距离相近时精度下降的问题,提出一种改进的高斯混合PHD滤波算法。该算法在高斯混合框架下通过修正PHD递归方程,有效地解决了漏检引起的有用信息丢失问题;利用权值判断高斯分量是否用于提取目标状态,避免了具有较高权值的高斯分量合并在一起,从而改善目标相互接近时的跟踪性能。仿真实验表明,改进算法在滤波精度和目标数估计方面均优于传统的GM-PHD算法。
关键词
多目标跟踪
高斯混合概率假设密度
漏检
分量合并
Keywords
multi-target tracking
Gaussian mixture probability hypothesis density filter
missed detection
component merging
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
多目标跟踪中一种改进的高斯混合PHD滤波算法
胡玮静
陈秀宏
《计算机工程与应用》
CSCD
北大核心
2016
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部