期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度学习SuperGlue算法的单目视觉里程计
1
作者 刘帅 芮挺 +2 位作者 胡育成 杨成松 王东 《计算机科学》 CSCD 北大核心 2021年第8期157-161,共5页
基于特征点法的视觉里程计中,光照和视角变化会导致特征点提取不稳定,进而影响相机位姿估计精度,针对该问题,提出了一种基于深度学习SuperGlue匹配算法的单目视觉里程计建模方法。首先,通过SuperPoint检测器获取特征点,并对得到的特征... 基于特征点法的视觉里程计中,光照和视角变化会导致特征点提取不稳定,进而影响相机位姿估计精度,针对该问题,提出了一种基于深度学习SuperGlue匹配算法的单目视觉里程计建模方法。首先,通过SuperPoint检测器获取特征点,并对得到的特征点进行编码,得到包含特征点坐标和描述子的向量;然后,通过注意力GNN网络生成更具代表性的描述子,并创建M×N型得分分配矩阵,采用Sinkhorn算法求解最优得分分配矩阵,从而得到最优特征匹配;最后,根据最优特征匹配进行相机位姿恢复,采用最小化投影误差法进行相机位姿优化。实验结果表明,在无后端优化的条件下,该算法与基于ORB或SIFT算法的视觉里程计相比,不仅对视角和光线变化更鲁棒,而且其绝对轨迹误差和相对位姿误差的精度均有显著提升,进一步验证了基于深度学习的SuperGlue匹配算法在视觉SLAM中的可行性和优越性。 展开更多
关键词 视觉里程计 深度学习 特征匹配 SuperGlue GNN
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部