以线性低密度聚乙烯(linear low density polyethylene,LLDPE)为基础树脂,采用紫外光交联法制备了交联聚乙烯试样(记为XLPE1),并利用水刀电极法比较了XLPE1与过氧化物交联低密度聚乙烯(记为XLPE2)在抗水树性能的差异。结果表明,...以线性低密度聚乙烯(linear low density polyethylene,LLDPE)为基础树脂,采用紫外光交联法制备了交联聚乙烯试样(记为XLPE1),并利用水刀电极法比较了XLPE1与过氧化物交联低密度聚乙烯(记为XLPE2)在抗水树性能的差异。结果表明,未经过交联反应的LLDPE的水树枝尺寸明显低于低密度聚乙烯(linear low density polyethylene,LDPE),即使两种材料在经过交联反应后抗水树能力均变强,但XLPE1的抗水树性能仍优于XLPE2。拉伸实验过程中出现的应变硬化现象表明,交联键以及LLDPE中密集的短支链均可以增加无定形相的连接分子链密度,延缓了水树的生长。另外,动态热机械分析(dynamic mechanical analysis,DMA)结果表明交联反应使材料无定形相韧性增加,有助于吸收微水珠的冲击力。XLPE1具有相对优异的抑制水树生长能力,这可能与LLDPE抗水树性能略好以及其交联度略高有关。展开更多
文摘以线性低密度聚乙烯(linear low density polyethylene,LLDPE)为基础树脂,采用紫外光交联法制备了交联聚乙烯试样(记为XLPE1),并利用水刀电极法比较了XLPE1与过氧化物交联低密度聚乙烯(记为XLPE2)在抗水树性能的差异。结果表明,未经过交联反应的LLDPE的水树枝尺寸明显低于低密度聚乙烯(linear low density polyethylene,LDPE),即使两种材料在经过交联反应后抗水树能力均变强,但XLPE1的抗水树性能仍优于XLPE2。拉伸实验过程中出现的应变硬化现象表明,交联键以及LLDPE中密集的短支链均可以增加无定形相的连接分子链密度,延缓了水树的生长。另外,动态热机械分析(dynamic mechanical analysis,DMA)结果表明交联反应使材料无定形相韧性增加,有助于吸收微水珠的冲击力。XLPE1具有相对优异的抑制水树生长能力,这可能与LLDPE抗水树性能略好以及其交联度略高有关。