期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于BP神经网络和C-Means聚类算法的水下导航适配区分类预测
1
作者
孙逸诺
舒洪博
+2 位作者
赵可欣
王佳峻
蒋栾坤
《中文科技期刊数据库(全文版)自然科学》
2024年第6期0107-0112,共6页
在国家明确强调“海洋强国”战略部署的时代背景下,适配区分类预测技术是解决水下导航与定位问题的核心技术。因此,研发基于重力异常数据的水下导航适配区分类预测模型,对于提高导航可靠性与精准度具有关键性的技术意义。本文针对不同...
在国家明确强调“海洋强国”战略部署的时代背景下,适配区分类预测技术是解决水下导航与定位问题的核心技术。因此,研发基于重力异常数据的水下导航适配区分类预测模型,对于提高导航可靠性与精准度具有关键性的技术意义。本文针对不同区域的重力异常特征分布不同,首先提出一种基于C-Means聚类算法的区域适配性标定方法,通过将海域划分为五类,对各区域进行适配性标定。然后,在此基础上,本文提出一种基于BP神经网络的适配区分类预测方法,对区域适配度进行预测。实验结果表明,本文提出的预测模型在训练集中的预测精度达到99%,而在测试集中模型的预测精度达到97%。由此可见本文提出的预测模型具有较好的迁移性能,能够帮助水下航行器进行精准定位。
展开更多
关键词
三次样条插值法
C-MEANS
聚类算法
BP
神经网络模型
分类预测
下载PDF
职称材料
题名
基于BP神经网络和C-Means聚类算法的水下导航适配区分类预测
1
作者
孙逸诺
舒洪博
赵可欣
王佳峻
蒋栾坤
机构
沈阳航空航天大学安全工程学院
出处
《中文科技期刊数据库(全文版)自然科学》
2024年第6期0107-0112,共6页
文摘
在国家明确强调“海洋强国”战略部署的时代背景下,适配区分类预测技术是解决水下导航与定位问题的核心技术。因此,研发基于重力异常数据的水下导航适配区分类预测模型,对于提高导航可靠性与精准度具有关键性的技术意义。本文针对不同区域的重力异常特征分布不同,首先提出一种基于C-Means聚类算法的区域适配性标定方法,通过将海域划分为五类,对各区域进行适配性标定。然后,在此基础上,本文提出一种基于BP神经网络的适配区分类预测方法,对区域适配度进行预测。实验结果表明,本文提出的预测模型在训练集中的预测精度达到99%,而在测试集中模型的预测精度达到97%。由此可见本文提出的预测模型具有较好的迁移性能,能够帮助水下航行器进行精准定位。
关键词
三次样条插值法
C-MEANS
聚类算法
BP
神经网络模型
分类预测
分类号
TP3-05 [自动化与计算机技术—计算机科学与技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于BP神经网络和C-Means聚类算法的水下导航适配区分类预测
孙逸诺
舒洪博
赵可欣
王佳峻
蒋栾坤
《中文科技期刊数据库(全文版)自然科学》
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部