针对Bi_(2)MoO_(6)光催化剂在光催化反应过程中电子-空穴对分离效率低的问题,以期通过稀土离子掺杂对其光催化性能进行改性.采用溶剂热法合成了系列稀土离子掺杂的Bi_(2)MoO_(6)光催化剂,即为RE3+/Bi_(2)MoO_(6)(RE3+=Tb3+、Sm3+).通过...针对Bi_(2)MoO_(6)光催化剂在光催化反应过程中电子-空穴对分离效率低的问题,以期通过稀土离子掺杂对其光催化性能进行改性.采用溶剂热法合成了系列稀土离子掺杂的Bi_(2)MoO_(6)光催化剂,即为RE3+/Bi_(2)MoO_(6)(RE3+=Tb3+、Sm3+).通过多种分析手段对RE3+/Bi_(2)MoO_(6)材料的组成、结构和形貌进行了表征,并以有机染料罗丹明B(RhB)为模拟污染物,研究了该材料在可见光下的光催化活性.结果表明:稀土Tb3+、Sm3+离子掺杂改性后,样品的比表面积增大,并且对其能带结构、可见光吸收范围均有所调节,光生电子-空穴对的分离效率提高.在可见光下,样品4%Tb3+/Bi_(2)MoO_(6)和4%Sm3+/Bi_(2)MoO_(6)对50 mL 10 mg/L RhB的光降解率均达95%以上,较纯相Bi_(2)MoO_(6)的光催化效率提升了近2倍.展开更多
文摘针对Bi_(2)MoO_(6)光催化剂在光催化反应过程中电子-空穴对分离效率低的问题,以期通过稀土离子掺杂对其光催化性能进行改性.采用溶剂热法合成了系列稀土离子掺杂的Bi_(2)MoO_(6)光催化剂,即为RE3+/Bi_(2)MoO_(6)(RE3+=Tb3+、Sm3+).通过多种分析手段对RE3+/Bi_(2)MoO_(6)材料的组成、结构和形貌进行了表征,并以有机染料罗丹明B(RhB)为模拟污染物,研究了该材料在可见光下的光催化活性.结果表明:稀土Tb3+、Sm3+离子掺杂改性后,样品的比表面积增大,并且对其能带结构、可见光吸收范围均有所调节,光生电子-空穴对的分离效率提高.在可见光下,样品4%Tb3+/Bi_(2)MoO_(6)和4%Sm3+/Bi_(2)MoO_(6)对50 mL 10 mg/L RhB的光降解率均达95%以上,较纯相Bi_(2)MoO_(6)的光催化效率提升了近2倍.