旋转机械常处于变转速工作状态,因而其振动信号也表现出非平稳性。分析此类非平稳信号时由于受有限的时频分辨率影响,常无法获得理想的时频表示,难以揭示与旋转机械健康状态相关的有用信息。根据单个线性调频变换(LCT)能提升特定时刻时...旋转机械常处于变转速工作状态,因而其振动信号也表现出非平稳性。分析此类非平稳信号时由于受有限的时频分辨率影响,常无法获得理想的时频表示,难以揭示与旋转机械健康状态相关的有用信息。根据单个线性调频变换(LCT)能提升特定时刻时频聚集性这一特点,提出了调频率自适应匹配线性变换(Adaptively Matching Chirp-rate Linear Transform,AMCLT)。利用最大峭度准则指导选取每个时刻合适的调频率,并且只保留与所选调频率相关的时频分布用于构造最终的时频表示;扩展原始线性变换基函数,使所提AMCLT方法在无需迭代情况下可同时完成对多分量非线性调频信号的分析。此外,对所提AMCLT方法进行了信号重构分析,可实现对信号中目标频率分量的时域信号重构。振动信号处理结果表明,在时频表示的可读性方面,所提方法可得到能量更加集中且不受交叉项干扰的时频表示;在特征提取方面,所提方法可更加准确地提取旋转机械振动信号中的频率特征,可有效应用于旋转机械的故障诊断。展开更多
文摘旋转机械常处于变转速工作状态,因而其振动信号也表现出非平稳性。分析此类非平稳信号时由于受有限的时频分辨率影响,常无法获得理想的时频表示,难以揭示与旋转机械健康状态相关的有用信息。根据单个线性调频变换(LCT)能提升特定时刻时频聚集性这一特点,提出了调频率自适应匹配线性变换(Adaptively Matching Chirp-rate Linear Transform,AMCLT)。利用最大峭度准则指导选取每个时刻合适的调频率,并且只保留与所选调频率相关的时频分布用于构造最终的时频表示;扩展原始线性变换基函数,使所提AMCLT方法在无需迭代情况下可同时完成对多分量非线性调频信号的分析。此外,对所提AMCLT方法进行了信号重构分析,可实现对信号中目标频率分量的时域信号重构。振动信号处理结果表明,在时频表示的可读性方面,所提方法可得到能量更加集中且不受交叉项干扰的时频表示;在特征提取方面,所提方法可更加准确地提取旋转机械振动信号中的频率特征,可有效应用于旋转机械的故障诊断。