期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
图像分类的深度卷积神经网络模型综述
被引量:
104
1
作者
张珂
冯晓晗
+5 位作者
郭玉荣
苏昱坤
赵凯
赵振兵
马占宇
丁巧林
《中国图象图形学报》
CSCD
北大核心
2021年第10期2305-2325,共21页
图像分类是计算机视觉中的一项重要任务,传统的图像分类方法具有一定的局限性。随着人工智能技术的发展,深度学习技术越来越成熟,利用深度卷积神经网络对图像进行分类成为研究热点,图像分类的深度卷积神经网络结构越来越多样,其性能远...
图像分类是计算机视觉中的一项重要任务,传统的图像分类方法具有一定的局限性。随着人工智能技术的发展,深度学习技术越来越成熟,利用深度卷积神经网络对图像进行分类成为研究热点,图像分类的深度卷积神经网络结构越来越多样,其性能远远好于传统的图像分类方法。本文立足于图像分类的深度卷积神经网络模型结构,根据模型发展和模型优化的历程,将深度卷积神经网络分为经典深度卷积神经网络模型、注意力机制深度卷积神经网络模型、轻量级深度卷积神经网络模型和神经网络架构搜索模型等4类,并对各类深度卷积神经网络模型结构的构造方法和特点进行了全面综述,对各类分类模型的性能进行了对比与分析。虽然深度卷积神经网络模型的结构设计越来越精妙,模型优化的方法越来越强大,图像分类准确率在不断刷新的同时,模型的参数量也在逐渐降低,训练和推理速度不断加快。然而深度卷积神经网络模型仍有一定的局限性,本文给出了存在的问题和未来可能的研究方向,即深度卷积神经网络模型主要以有监督学习方式进行图像分类,受到数据集质量和规模的限制,无监督式学习和半监督学习方式的深度卷积神经网络模型将是未来的重点研究方向之一;深度卷积神经网络模型的速度和资源消耗仍不尽人意,应用于移动式设备具有一定的挑战性;模型的优化方法以及衡量模型优劣的度量方法有待深入研究;人工设计深度卷积神经网络结构耗时耗力,神经架构搜索方法将是未来深度卷积神经网络模型设计的发展方向。
展开更多
关键词
深度学习
图像分类(IC)
深度卷积神经网络(DCNN)
模型结构
模型优化
原文传递
人脸年龄估计的深度学习方法综述
被引量:
15
2
作者
张珂
王新胜
+2 位作者
郭玉荣
苏昱坤
何颖宣
《中国图象图形学报》
CSCD
北大核心
2019年第8期1215-1230,共16页
目的人脸年龄估计技术作为一种新兴的生物特征识别技术,已经成为计算机视觉领域的重要研究方向之一。随着深度学习的飞速发展,基于深度卷积神经网络的人脸年龄估计技术已成为研究热点。方法本文以基于深度学习的真实年龄和表象年龄估计...
目的人脸年龄估计技术作为一种新兴的生物特征识别技术,已经成为计算机视觉领域的重要研究方向之一。随着深度学习的飞速发展,基于深度卷积神经网络的人脸年龄估计技术已成为研究热点。方法本文以基于深度学习的真实年龄和表象年龄估计方法为研究对象,通过调研文献,分析了基于深度学习的人脸年龄估计方法的基本思想和特点,阐述其研究现状,总结关键技术及其局限性,对比了常见人脸年龄估计方法的性能,展望了未来的发展方向。结果尽管基于深度学习的人脸年龄估计研究取得了巨大的进展,但非受限条件下年龄估计的效果仍不能满足实际需求,主要因为当前人脸年龄估计研究仍存在以下困难:1)引入人脸年龄估计的先验知识不足;2)缺少兼顾全局和局部细节的人脸年龄估计特征表达方法;3)现有人脸年龄估计数据集的限制;4)实际应用环境下的多尺度人脸年龄估计问题。结论基于深度学习的人脸年龄估计技术已取得显著进展,但是由于实际应用场景复杂,容易导致人脸年龄估计效果不佳。对目前基于深度学习的人脸年龄估计技术进行全面综述,从而为研究者解决存在的问题提供便利。
展开更多
关键词
人脸年龄估计
深度学习
深度卷积神经网络
真实年龄
表象年龄
原文传递
题名
图像分类的深度卷积神经网络模型综述
被引量:
104
1
作者
张珂
冯晓晗
郭玉荣
苏昱坤
赵凯
赵振兵
马占宇
丁巧林
机构
华北电力大学电子与通信工程系
北京邮电大学人工智能学院
出处
《中国图象图形学报》
CSCD
北大核心
2021年第10期2305-2325,共21页
基金
国家自然科学基金项目(62076093,61871182,61922015,61773071,61302163)
河北省自然科学基金项目(F2020502009,F2015502062,F2016502062)
+1 种基金
北京市自然科学基金项目(4192055)
中央高校基本科研业务费专项资金资助(2020YJ006,2020MS099)。
文摘
图像分类是计算机视觉中的一项重要任务,传统的图像分类方法具有一定的局限性。随着人工智能技术的发展,深度学习技术越来越成熟,利用深度卷积神经网络对图像进行分类成为研究热点,图像分类的深度卷积神经网络结构越来越多样,其性能远远好于传统的图像分类方法。本文立足于图像分类的深度卷积神经网络模型结构,根据模型发展和模型优化的历程,将深度卷积神经网络分为经典深度卷积神经网络模型、注意力机制深度卷积神经网络模型、轻量级深度卷积神经网络模型和神经网络架构搜索模型等4类,并对各类深度卷积神经网络模型结构的构造方法和特点进行了全面综述,对各类分类模型的性能进行了对比与分析。虽然深度卷积神经网络模型的结构设计越来越精妙,模型优化的方法越来越强大,图像分类准确率在不断刷新的同时,模型的参数量也在逐渐降低,训练和推理速度不断加快。然而深度卷积神经网络模型仍有一定的局限性,本文给出了存在的问题和未来可能的研究方向,即深度卷积神经网络模型主要以有监督学习方式进行图像分类,受到数据集质量和规模的限制,无监督式学习和半监督学习方式的深度卷积神经网络模型将是未来的重点研究方向之一;深度卷积神经网络模型的速度和资源消耗仍不尽人意,应用于移动式设备具有一定的挑战性;模型的优化方法以及衡量模型优劣的度量方法有待深入研究;人工设计深度卷积神经网络结构耗时耗力,神经架构搜索方法将是未来深度卷积神经网络模型设计的发展方向。
关键词
深度学习
图像分类(IC)
深度卷积神经网络(DCNN)
模型结构
模型优化
Keywords
deep learning
image classification(IC)
deep convolutional neural networks(DCNN)
model structure
model optimization
分类号
TP301.6 [自动化与计算机技术—计算机系统结构]
原文传递
题名
人脸年龄估计的深度学习方法综述
被引量:
15
2
作者
张珂
王新胜
郭玉荣
苏昱坤
何颖宣
机构
华北电力大学电子与通信工程系
出处
《中国图象图形学报》
CSCD
北大核心
2019年第8期1215-1230,共16页
基金
国家自然科学基金项目(61871182,61302163)
河北省自然科学基金项目(F2015502062)
中央高校基本科研经费项目(2018MS094,2018MS095)~~
文摘
目的人脸年龄估计技术作为一种新兴的生物特征识别技术,已经成为计算机视觉领域的重要研究方向之一。随着深度学习的飞速发展,基于深度卷积神经网络的人脸年龄估计技术已成为研究热点。方法本文以基于深度学习的真实年龄和表象年龄估计方法为研究对象,通过调研文献,分析了基于深度学习的人脸年龄估计方法的基本思想和特点,阐述其研究现状,总结关键技术及其局限性,对比了常见人脸年龄估计方法的性能,展望了未来的发展方向。结果尽管基于深度学习的人脸年龄估计研究取得了巨大的进展,但非受限条件下年龄估计的效果仍不能满足实际需求,主要因为当前人脸年龄估计研究仍存在以下困难:1)引入人脸年龄估计的先验知识不足;2)缺少兼顾全局和局部细节的人脸年龄估计特征表达方法;3)现有人脸年龄估计数据集的限制;4)实际应用环境下的多尺度人脸年龄估计问题。结论基于深度学习的人脸年龄估计技术已取得显著进展,但是由于实际应用场景复杂,容易导致人脸年龄估计效果不佳。对目前基于深度学习的人脸年龄估计技术进行全面综述,从而为研究者解决存在的问题提供便利。
关键词
人脸年龄估计
深度学习
深度卷积神经网络
真实年龄
表象年龄
Keywords
face age estimation
deep learning
deep convolutional neural networks(DCNNs)
real age
apparent age
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
TP18 [自动化与计算机技术—控制理论与控制工程]
原文传递
题名
作者
出处
发文年
被引量
操作
1
图像分类的深度卷积神经网络模型综述
张珂
冯晓晗
郭玉荣
苏昱坤
赵凯
赵振兵
马占宇
丁巧林
《中国图象图形学报》
CSCD
北大核心
2021
104
原文传递
2
人脸年龄估计的深度学习方法综述
张珂
王新胜
郭玉荣
苏昱坤
何颖宣
《中国图象图形学报》
CSCD
北大核心
2019
15
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部