通过在NH4F+H2O的乙二醇溶液中阳极氧化铁箔,制备了纳米多孔结构的铁氧化物(Fe2O3–Fe3O4),然后在纳米多孔中电沉积镍,再经过400°C退火0.5 h,获得了镍与纳米多孔氧化铁的复合材料(Fe2O3–Fe3O4/Ni)。考察了电流密度和时间对镍沉积...通过在NH4F+H2O的乙二醇溶液中阳极氧化铁箔,制备了纳米多孔结构的铁氧化物(Fe2O3–Fe3O4),然后在纳米多孔中电沉积镍,再经过400°C退火0.5 h,获得了镍与纳米多孔氧化铁的复合材料(Fe2O3–Fe3O4/Ni)。考察了电流密度和时间对镍沉积的影响。用扫描电镜、能谱仪、X射线衍射仪表征了复合材料的表面形貌、元素组成和物相,测试了其电化学性能并与未经电沉积镍的纳米多孔氧化铁(Fe2O3–Fe3O4)比较。结果表明,氧化铁由Fe2O3和Fe3O4组成。镀镍的最佳电流密度为2.0 m A/dm2,时间30 s。该纳米多孔Fe2O3–Fe3O4/Ni复合材料作为锂离子电池负极材料表现出更好的电化学性能──经过50次充放电循环后的放电比容量仍有438.3 m A·h/g,而Fe2O3–Fe3O4电极的放电比容量仅为110.6 m A·h/g。Fe2O3–Fe3O4/Ni电极的循环稳定性和倍率性能优异。展开更多
文摘以醋酸锂和醋酸锰为原料,浓硝酸为辅助氧化剂,在温度600℃、时间3 h下采用无焰燃烧合成尖晶石型Li Mn2O4锂离子电池正极材料,研究了不同浓度硝酸对制备尖晶石型Li Mn2O4的影响.通过XRD和SEM分别研究了产物的物相组成及微观形貌;通过电性能测试研究了产物的比容量变化.实验结果表明,当n(Li)∶n(Mn)=1∶2(mol/mol)时,可得到Li Mn2O4单相,硝酸浓度对燃烧产物颗粒影响也较大;硝酸浓度为15 mol/L时产物初始放电比容量为112.1 m Ah/g,40次充放电循环后,放电比容量为99.0 m Ah/g,容量保持率为88.3%,具有较好的容量及存储性能.
文摘通过在NH4F+H2O的乙二醇溶液中阳极氧化铁箔,制备了纳米多孔结构的铁氧化物(Fe2O3–Fe3O4),然后在纳米多孔中电沉积镍,再经过400°C退火0.5 h,获得了镍与纳米多孔氧化铁的复合材料(Fe2O3–Fe3O4/Ni)。考察了电流密度和时间对镍沉积的影响。用扫描电镜、能谱仪、X射线衍射仪表征了复合材料的表面形貌、元素组成和物相,测试了其电化学性能并与未经电沉积镍的纳米多孔氧化铁(Fe2O3–Fe3O4)比较。结果表明,氧化铁由Fe2O3和Fe3O4组成。镀镍的最佳电流密度为2.0 m A/dm2,时间30 s。该纳米多孔Fe2O3–Fe3O4/Ni复合材料作为锂离子电池负极材料表现出更好的电化学性能──经过50次充放电循环后的放电比容量仍有438.3 m A·h/g,而Fe2O3–Fe3O4电极的放电比容量仅为110.6 m A·h/g。Fe2O3–Fe3O4/Ni电极的循环稳定性和倍率性能优异。