To investigate the behaviors of Cu^(2+)and Ni^(2+)with the change of conditions in Cu_(2+)−Ni_(2+)−NH_(3)−NH_(4)+−C_(2)O_(4)^(2-)−H_(2)O reaction system,mathematical models of thermodynamics based on the principle of ...To investigate the behaviors of Cu^(2+)and Ni^(2+)with the change of conditions in Cu_(2+)−Ni_(2+)−NH_(3)−NH_(4)+−C_(2)O_(4)^(2-)−H_(2)O reaction system,mathematical models of thermodynamics based on the principle of mass conservation were established.The simulation results indicate that the precipitation of metal ions from the aqueous phase is a complicated dynamic equilibrium process,during which the coordination reactions of Cu^(2+)and Ni^(2+)with NH3 forming[Cu(NH3)n]^(2+)(n=3−5)and[Ni(NH3)m]^(2+)(m=3−6)are predominant under high pH conditions,respectively.The pH ranges for the simultaneous precipitation of Cu^(2+)and Ni^(2+)are 2.0−6.5 and 2.0−5.5 when[NH3]T equals 0.6 and 4.2 mol/L,respectively,with the prefixed[C_(2)O_(4)^(2-)]T of 0.6 mol/L.Due to the fractional precipitation of Cu^(2+)and Ni^(2+),Cu−Ni composite is obtained after the thermal decomposition of Cu−Ni oxalate complex salts prepared in a pure water system when pH>7.0.By applying the mixed solvent(water/ethanol)as the precipitation medium,the Cu−Ni alloy rods can be finally fabricated with high purity and crystallinity.展开更多
Quasi-one-dimensional NiO with a hierarchically porous structure was synthesized through a facile coordination−precipitation method with the coupling effect of ammonia and a post-calcination treatment.The electrocatal...Quasi-one-dimensional NiO with a hierarchically porous structure was synthesized through a facile coordination−precipitation method with the coupling effect of ammonia and a post-calcination treatment.The electrocatalytic properties of NiO fibers for the oxidation of ethanol were compared with those of NiO spheres.The results show that the fibrous NiO possesses a larger specific surface area of 140.153 m2/g and a lower electrical resistivity of 4.5×105Ω·m,leading to an impressively superior electrocatalytic activity to spherical NiO for ethanol oxidation in alkaline media.The current decay on fibrous NiO at 0.6 V in 100−900 s was 0.00003%,which is much lower than that of spherical NiO,indicating its better stability.The unique morphology and hierarchically porous structure give the fibrous NiO great potential to be used as an anodic electrocatalyst for direct ethanol fuel cells.展开更多
基金the financial supports from Natural Science Foundation of Hunan Province,China(No.2020JJ4735)Science and Technology Department of Hunan Province Tackling Key Scientific and Technological Problems and Transformation of Major Scientific and Technological Achievements,China(No.2018GK4001)the Hunan Key Laboratory for Rare Earth Functional Materials,China(No.2017TP1031).
文摘To investigate the behaviors of Cu^(2+)and Ni^(2+)with the change of conditions in Cu_(2+)−Ni_(2+)−NH_(3)−NH_(4)+−C_(2)O_(4)^(2-)−H_(2)O reaction system,mathematical models of thermodynamics based on the principle of mass conservation were established.The simulation results indicate that the precipitation of metal ions from the aqueous phase is a complicated dynamic equilibrium process,during which the coordination reactions of Cu^(2+)and Ni^(2+)with NH3 forming[Cu(NH3)n]^(2+)(n=3−5)and[Ni(NH3)m]^(2+)(m=3−6)are predominant under high pH conditions,respectively.The pH ranges for the simultaneous precipitation of Cu^(2+)and Ni^(2+)are 2.0−6.5 and 2.0−5.5 when[NH3]T equals 0.6 and 4.2 mol/L,respectively,with the prefixed[C_(2)O_(4)^(2-)]T of 0.6 mol/L.Due to the fractional precipitation of Cu^(2+)and Ni^(2+),Cu−Ni composite is obtained after the thermal decomposition of Cu−Ni oxalate complex salts prepared in a pure water system when pH>7.0.By applying the mixed solvent(water/ethanol)as the precipitation medium,the Cu−Ni alloy rods can be finally fabricated with high purity and crystallinity.
基金Project(51404306)supported by the National Natural Science Foundation of ChinaProject(JNJJ201613)supported by Jiana Foundation of Central South University,ChinaProject(2017YFC0210401)supported by the National Key Research and Development Program of China。
文摘Quasi-one-dimensional NiO with a hierarchically porous structure was synthesized through a facile coordination−precipitation method with the coupling effect of ammonia and a post-calcination treatment.The electrocatalytic properties of NiO fibers for the oxidation of ethanol were compared with those of NiO spheres.The results show that the fibrous NiO possesses a larger specific surface area of 140.153 m2/g and a lower electrical resistivity of 4.5×105Ω·m,leading to an impressively superior electrocatalytic activity to spherical NiO for ethanol oxidation in alkaline media.The current decay on fibrous NiO at 0.6 V in 100−900 s was 0.00003%,which is much lower than that of spherical NiO,indicating its better stability.The unique morphology and hierarchically porous structure give the fibrous NiO great potential to be used as an anodic electrocatalyst for direct ethanol fuel cells.