为了对装配故障率进行定量研究,用最小二乘支持向量机(LSSVM)对装配故障率与属性之间的关系进行了建模。在该模型中对影响故障率的5M1E(Man,Machine,Material,Method,Measurement and Environment)因素用装配可靠性评价方法(Assembly Re...为了对装配故障率进行定量研究,用最小二乘支持向量机(LSSVM)对装配故障率与属性之间的关系进行了建模。在该模型中对影响故障率的5M1E(Man,Machine,Material,Method,Measurement and Environment)因素用装配可靠性评价方法(Assembly ReliabilityEvaluation Method,AREM)提取的装配故障率属性进行了改进,建立了装配故障率的全属性模型;为提高求解效率以及使装配可靠性控制更具有目的性,用灰色关联分析对装配故障率的属性进行提取,得到了主要属性,并用遗传算法对主要属性建立的装配故障率模型进行参数优化。用灰色关联分析提取的主要属性的LSSVM模型与全部属性建立的LSSVM模型和主要属性建立的BP神经网络模型的装配故障率预测进行比较,结果表明用灰色关联分析的LSSVM故障率模型不仅建模简单而且还具有预测精度高等优点。展开更多
文摘为了对装配故障率进行定量研究,用最小二乘支持向量机(LSSVM)对装配故障率与属性之间的关系进行了建模。在该模型中对影响故障率的5M1E(Man,Machine,Material,Method,Measurement and Environment)因素用装配可靠性评价方法(Assembly ReliabilityEvaluation Method,AREM)提取的装配故障率属性进行了改进,建立了装配故障率的全属性模型;为提高求解效率以及使装配可靠性控制更具有目的性,用灰色关联分析对装配故障率的属性进行提取,得到了主要属性,并用遗传算法对主要属性建立的装配故障率模型进行参数优化。用灰色关联分析提取的主要属性的LSSVM模型与全部属性建立的LSSVM模型和主要属性建立的BP神经网络模型的装配故障率预测进行比较,结果表明用灰色关联分析的LSSVM故障率模型不仅建模简单而且还具有预测精度高等优点。