A liquid lubricated head disk system is introduced. Subjected to high shear rate the rheology of the ultra thin film is different from that of the bulk continuum theory. The shear thinning effect is considered in set...A liquid lubricated head disk system is introduced. Subjected to high shear rate the rheology of the ultra thin film is different from that of the bulk continuum theory. The shear thinning effect is considered in setting up the mathematical model of the ultra thin film rheology. The Reynolds equation and the perturbation theory are employed to set up the static pressure distribution model and to deduce the dynamic pressure equation. The static and dynamic equations are solved by finite difference method. Based on the dynamic analysis the dynamic response of the slider is simulated and some valuable results are obtained about the static and dynamic characteristics of the liquid lubricated head disk systems.展开更多
文摘A liquid lubricated head disk system is introduced. Subjected to high shear rate the rheology of the ultra thin film is different from that of the bulk continuum theory. The shear thinning effect is considered in setting up the mathematical model of the ultra thin film rheology. The Reynolds equation and the perturbation theory are employed to set up the static pressure distribution model and to deduce the dynamic pressure equation. The static and dynamic equations are solved by finite difference method. Based on the dynamic analysis the dynamic response of the slider is simulated and some valuable results are obtained about the static and dynamic characteristics of the liquid lubricated head disk systems.