期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于不可分小波和改进YOLOv8的交通标志检测算法
被引量:
1
1
作者
范阳旭
《图像与信号处理》
2024年第2期179-189,共11页
在现代智能交通系统中,高效且准确的交通标志检测对于辅助驾驶和自动驾驶系统具有重要意义。针对背景复杂的道路场景中交通标志尺寸小导致的识别精度低,漏检等问题,提出了一种基于不可分小波和改进YOLOv8的交通标志检测算法。首先,采用...
在现代智能交通系统中,高效且准确的交通标志检测对于辅助驾驶和自动驾驶系统具有重要意义。针对背景复杂的道路场景中交通标志尺寸小导致的识别精度低,漏检等问题,提出了一种基于不可分小波和改进YOLOv8的交通标志检测算法。首先,采用不可分小波处理输入图像,有效提取高频信息以增强图像的细节表现,提高模型的鲁棒性。其次,引入针对小目标的检测层,取代原始模型中的大目标检测层,优化网络结构,从而显著提升了小目标的检测性能。接着,将网络中的跨步卷积替换成SPD-Conv,有效减少特征信息的丢失。最后,采用WIoU损失函数代替原有的损失函数。在TT100K数据集上进行训练,实验结果显示,改进后的算法相较于YOLOv8在精确率及mAP@0.5上,分别提升了9.7%和11.5%,性能明显优于原始算法。
展开更多
关键词
交通标志检测
不可分小波
YOLOv8
小目标检测
SPD-Conv
下载PDF
职称材料
题名
基于不可分小波和改进YOLOv8的交通标志检测算法
被引量:
1
1
作者
范阳旭
机构
湖北大学计算机与信息工程学院
出处
《图像与信号处理》
2024年第2期179-189,共11页
文摘
在现代智能交通系统中,高效且准确的交通标志检测对于辅助驾驶和自动驾驶系统具有重要意义。针对背景复杂的道路场景中交通标志尺寸小导致的识别精度低,漏检等问题,提出了一种基于不可分小波和改进YOLOv8的交通标志检测算法。首先,采用不可分小波处理输入图像,有效提取高频信息以增强图像的细节表现,提高模型的鲁棒性。其次,引入针对小目标的检测层,取代原始模型中的大目标检测层,优化网络结构,从而显著提升了小目标的检测性能。接着,将网络中的跨步卷积替换成SPD-Conv,有效减少特征信息的丢失。最后,采用WIoU损失函数代替原有的损失函数。在TT100K数据集上进行训练,实验结果显示,改进后的算法相较于YOLOv8在精确率及mAP@0.5上,分别提升了9.7%和11.5%,性能明显优于原始算法。
关键词
交通标志检测
不可分小波
YOLOv8
小目标检测
SPD-Conv
分类号
TP3 [自动化与计算机技术—计算机科学与技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于不可分小波和改进YOLOv8的交通标志检测算法
范阳旭
《图像与信号处理》
2024
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部