期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于DeepAR神经网络时间序列模型的电能消耗预测 被引量:4
1
作者 邱禧荷 茹亚军 +1 位作者 陈斌 郭韵 《江苏大学学报(自然科学版)》 CAS 北大核心 2022年第5期599-603,共5页
为实现对电能消耗进行准确预测,基于美国PJM公司数据集,采用基于深度自回归循环网络(deep autoregressive recurrent networks,Deep AR)时间序列模型,对Commonwealth Edison公司未来某12 h区间电能消耗进行预测.该模型基于长短期记忆网... 为实现对电能消耗进行准确预测,基于美国PJM公司数据集,采用基于深度自回归循环网络(deep autoregressive recurrent networks,Deep AR)时间序列模型,对Commonwealth Edison公司未来某12 h区间电能消耗进行预测.该模型基于长短期记忆网络(long short term memory network,LSTM)得到数据的分布参数,最后在高斯分布中进行采样,从而得到预测值.采用平均绝对误差(MAE)、均方根误差(RMSE)和平均绝对百分比误差(MAPE)作为预测短期电能消耗评价指标,并与差分整合移动平均自回归模型(autoregressive integrated moving average,ARIMA)算法模型和Prophet算法模型进行比较.结果表明:Deep AR算法模型的MAE、RMSE和MAPE分别为1070.01、1279.31和6.12%,预测准确率较高;该算法不仅能够预测未来一段时间的电能消耗,还能预测其概率分布,进一步刻画事件发生的全局性. 展开更多
关键词 时间序列模型 电能消耗预测 长短期记忆网络 Deep AR 概率分布
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部