期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于燃气安全风险的大数据预警模型研究 被引量:4
1
作者 刘江涛 张涛 +9 位作者 吴波 顾先凯 李春青 关鸿鹏 李夏喜 曹印峰 詹淑慧 甘颖涛 荫东锦 任立坤 《煤气与热力》 2018年第12期36-42,共7页
确定燃气管道安全风险大数据预警模型采用怀卡托智能分析环境。确定数据预处理流程,包含原始数据的获取、数据清洗、特征变量确定与提取、缺失值填补、训练样本的选取。指出内部因素数据为管龄、管材、管径、压力级制、埋深、管理单位,... 确定燃气管道安全风险大数据预警模型采用怀卡托智能分析环境。确定数据预处理流程,包含原始数据的获取、数据清洗、特征变量确定与提取、缺失值填补、训练样本的选取。指出内部因素数据为管龄、管材、管径、压力级制、埋深、管理单位,外部因素数据为铁路、地铁等电气化轨道、水系面(河流与湖泊)等影响管道腐蚀的3类。从数据库中随机提取正样本1份,负样本4份,每份各855个样本点。将训练数据集分成3组:训练样本1、训练样本2、训练样本3,组成分别为正样本+负样本1,正样本+负样本2,正样本+负样本3。确定缺失值填补采用KNN算法。选择决策树C4.5、随机森林、贝叶斯网络、朴素贝叶斯、支持向量机和逻辑回归6种算法作为预警模型训练算法。根据选择的算法,同时考虑内外部因素的影响,进行预警模型训练(即实验)。根据实验结果比较分析,选出随机森林为最优算法。同时考虑内外部因素比仅考虑内部因素,模型准确率提高5.07%。 展开更多
关键词 KNN算法 随机森林算法 数据挖掘 燃气管道安全风险 大数据预警模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部