期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于介电特性与IRIV-GWO-SVR算法的番茄叶片含水率检测 被引量:19
1
作者 孙俊 莫云南 +3 位作者 戴春霞 陈勇 杨宁 唐游 《农业工程学报》 EI CAS CSCD 北大核心 2018年第14期188-195,共8页
为了探究利用介电特性检测作物水分状况的可行性,研究了一种基于介电特性的有效、快速、精确检测番茄叶片含水率的方法。以300片不同含水率的番茄叶片为研究对象,通过LCR测量仪测定叶片在0.05~200 k Hz下的相对介电常数ε′和介质损耗... 为了探究利用介电特性检测作物水分状况的可行性,研究了一种基于介电特性的有效、快速、精确检测番茄叶片含水率的方法。以300片不同含水率的番茄叶片为研究对象,通过LCR测量仪测定叶片在0.05~200 k Hz下的相对介电常数ε′和介质损耗因数ε″,并采用干燥法测量叶片含水率。利用迭代保留信息变量法(iteratively retains informative variables,IRIV)对介电参数进行特征变量选取,并与连续投影算法(successive projections algorithm,SPA)进行比较,利用支持向量回归机(support vector regression,SVR)分别建立叶片全变量、2种特征变量与叶片含水率的关系模型。结果表明,基于迭代保留信息变量法选取特征变量的支持向量回归模型(IRIV-SVR)具有良好的预测能力,但预测精度仍需提高,故引入灰狼优化算法(grey wolf optimizer,GWO)优化模型的参数c(惩罚因子)和g(核函数参数)。最终,经GWO优化后的模型(IRIV-GWO-SVR)的预测集决定系数R2与均方根误差RMSE分别为0.963 8,0.020 7。因此,利用介电特性结合IRIV-GWO-SVR算法预测番茄叶片含水率是可行的,同时为其他叶片含水率检测提供了一种新的方法和思路。 展开更多
关键词 水分 模型 算法 番茄叶片 含水率 介电特性 迭代保留信息变量法 灰狼优化算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部