期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
具有四项的指数丢番图方程(Ⅲ)
1
作者 莫德泽 《数学学报(中文版)》 SCIE CSCD 北大核心 2000年第3期487-494,共8页
根据定理 1,2和 3;求任何一个方程 a~x-b~y=n,a~xb~y±a~z±b~w±1=0 或a~x±b~y±a~z±b~w=0(x,y,z,w∈≥0)的解都是很简单的,此处a,b是适合 2 ≤5 a,... 根据定理 1,2和 3;求任何一个方程 a~x-b~y=n,a~xb~y±a~z±b~w±1=0 或a~x±b~y±a~z±b~w=0(x,y,z,w∈≥0)的解都是很简单的,此处a,b是适合 2 ≤5 a,b≤50的互素的两个整数,n是适合1≤n≤80000的整数. 展开更多
关键词 BAKER方法 上界 指数丢番图方程
原文传递
TRANSCENDENTAL CONTINUED FRACTIONS
2
作者 莫德泽 《Chinese Science Bulletin》 SCIE EI CAS 1987年第20期1373-1377,共5页
Ⅰ. INTRODUCTION AND RESULTS If (an) and (bn), n=1, 2,…, are two sequences of positive rational integers, then, under Perron’s notation, the real irrational numbers A, B are defined by the simple continued fract... Ⅰ. INTRODUCTION AND RESULTS If (an) and (bn), n=1, 2,…, are two sequences of positive rational integers, then, under Perron’s notation, the real irrational numbers A, B are defined by the simple continued fractions [a1, a2, a3,…] and [b1, b2, b3,…], respectively. In this note we wish to establish the following results under a slighter condition than that mentioned in Refs. [2] and [3]. 展开更多
关键词 notation RATIONAL INTEGERS continued mentioned sufficiently umber ALGEBRAIC satisfy estab
原文传递
具有四项的指数丢番图方程(Ⅱ)
3
作者 莫德泽 《数学学报(中文版)》 SCIE CSCD 北大核心 1994年第4期482-490,共9页
本文中,我们给出了丢番图方程的解x,y,z,w的上界,其中p,q是给定的互素的正整数,a,b,c,d是给定的适合abed≠0的整数,此外,我们将指出在具体情形下如何把上界降低到方程允许的实际的解.最后,我们将用这个方... 本文中,我们给出了丢番图方程的解x,y,z,w的上界,其中p,q是给定的互素的正整数,a,b,c,d是给定的适合abed≠0的整数,此外,我们将指出在具体情形下如何把上界降低到方程允许的实际的解.最后,我们将用这个方法来解方程19.5x·17y=12.5z+41.17w+14, 5. 3x· 13y + 20= 7. 3z + 14. 13w和 13· 2x+ 5· 3y= 25. 2z+ 11. 3w. 展开更多
关键词 丢番图方程 上界
原文传递
p-adic Continued Fractions Ⅲ
4
作者 王连祥 莫德泽 《Acta Mathematica Sinica,English Series》 SCIE 1986年第4期299-308,共10页
1.Introduction In order to discuss the irrationality, the transcendence and the algebraic independence for p-adic numbers, the first author introduced in two previous papers [1, 2] a simple form for p-adic continued f... 1.Introduction In order to discuss the irrationality, the transcendence and the algebraic independence for p-adic numbers, the first author introduced in two previous papers [1, 2] a simple form for p-adic continued fraction which is called p-adic simple continued fraction by making use of the algebraic theory of continued fraction in the real field mentioned by Schmidt, and gave a sufficient condition for certain p-adic integers which and whose sum, defference, product and quotient are all p-adic transcendental numbers. 展开更多
关键词 p-adic Continued Fractions exp REAL
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部