期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于超球和ASSRFOA的多生支持向量机
1
作者 莫源乐 朱嘉静 +2 位作者 刘勇国 张云 李巧勤 《计算机系统应用》 2023年第9期43-52,共10页
支持向量机(support vector machine,SVM)是一种基于结构风险最小化的机器学习方法,能够有效解决分类问题.但随着研究问题的复杂化,现实的分类问题往往是多分类问题,而SVM仅能用于处理二分类任务.针对这个问题,一对多策略的多生支持向量... 支持向量机(support vector machine,SVM)是一种基于结构风险最小化的机器学习方法,能够有效解决分类问题.但随着研究问题的复杂化,现实的分类问题往往是多分类问题,而SVM仅能用于处理二分类任务.针对这个问题,一对多策略的多生支持向量机(multiple birth support vector machine,MBSVM)能够以较低的复杂度实现多分类,但缺点在于分类精度较低.本文对MBSVM进行改进,提出了一种新的SVM多分类算法:基于超球(hypersphere)和自适应缩小步长果蝇优化算法(fruit fly optimization algorithm with adaptive step size reduction,ASSRFOA)的MBSVM,简称HA-MBSVM.通过拟合超球得到的信息,先进行类别划分再构建分类器,并引入约束距离调节因子来适当提高分类器的差异性,同时采用ASSRFOA求解二次规划问题,HA-MBSVM可以更好地解决多分类问题.我们采用6个数据集评估HA-MBSVM的性能,实验结果表明HA-MBSVM的整体性能优于各对比算法. 展开更多
关键词 超球 多生支持向量机 多分类 自适应缩小步长 果蝇优化算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部