以第一性原理计算软件Material Studio的CASTEP模块,对Sr_2Fe Nb O_6(SFN)的结构、性能进行优化模拟,并与实验真实值对比,研究适合于SFN材料体系的交换关联泛函及相关参数的合理设置。具体为:采用不同的交换关联泛函对晶胞进行几何结构...以第一性原理计算软件Material Studio的CASTEP模块,对Sr_2Fe Nb O_6(SFN)的结构、性能进行优化模拟,并与实验真实值对比,研究适合于SFN材料体系的交换关联泛函及相关参数的合理设置。具体为:采用不同的交换关联泛函对晶胞进行几何结构优化,研究不同泛函对晶胞参数计算结果的影响;分别计算电子结构及禁带宽度,并与采用紫外-可见漫反射分析得到的禁带宽度值比较;对体系进行计算收敛测试,判断合适的K点取样、截断能;研究采用Hubbard模型对Fe和Nb赋不同U值对SFN禁带宽度及晶格参数计算结果的影响。结果表明:使用GGA-PBESOL泛函,当K点取样密度为(2×2×2),截断能为400 e V时,已经可以满足基本的计算精度要求;使用GGA+U方法,当UFe=7 e V、UNb=9 e V时,计算出的禁带宽度和晶格常数与实验值符合较好。展开更多
文摘以第一性原理计算软件Material Studio的CASTEP模块,对Sr_2Fe Nb O_6(SFN)的结构、性能进行优化模拟,并与实验真实值对比,研究适合于SFN材料体系的交换关联泛函及相关参数的合理设置。具体为:采用不同的交换关联泛函对晶胞进行几何结构优化,研究不同泛函对晶胞参数计算结果的影响;分别计算电子结构及禁带宽度,并与采用紫外-可见漫反射分析得到的禁带宽度值比较;对体系进行计算收敛测试,判断合适的K点取样、截断能;研究采用Hubbard模型对Fe和Nb赋不同U值对SFN禁带宽度及晶格参数计算结果的影响。结果表明:使用GGA-PBESOL泛函,当K点取样密度为(2×2×2),截断能为400 e V时,已经可以满足基本的计算精度要求;使用GGA+U方法,当UFe=7 e V、UNb=9 e V时,计算出的禁带宽度和晶格常数与实验值符合较好。