感应耦合电能传输(inductive coupled power transfer,ICPT)技术是目前应用最为广泛的无线电能传输技术.应用软开关技术能提高ICPT系统的效率,但同时也带来了多软开关工作点(频率分叉)问题,使系统呈现复杂的动态特性.通过求解极限环的...感应耦合电能传输(inductive coupled power transfer,ICPT)技术是目前应用最为广泛的无线电能传输技术.应用软开关技术能提高ICPT系统的效率,但同时也带来了多软开关工作点(频率分叉)问题,使系统呈现复杂的动态特性.通过求解极限环的稳定域(region of stability,RoS)可以对其背后的原理进行很好的解释.本文以串联谐振型ICPT系统为例,首先对其建立了分段线性模型与碰撞映射模型,并利用ICPT系统的对称特性将碰撞映射模型进行了简化.通过理论分析,推导出基于二次型李雅普诺夫函数的稳定性判据.设计算法,以稳定性判据为约束条件,RoS体积为目标函数,通过遗传算法实现了RoS的求解.最后通过实例对此方法进行了验证.相比于现有方法,本方法求得的RoS体积更大,从而更好地解释了软开关ICPT系统的动态特性.本文所提出的方法也可用于求解其他分段线性系统的极限环RoS,为这类系统的研究与设计提供了一定的参考.展开更多
文摘感应耦合电能传输(inductive coupled power transfer,ICPT)技术是目前应用最为广泛的无线电能传输技术.应用软开关技术能提高ICPT系统的效率,但同时也带来了多软开关工作点(频率分叉)问题,使系统呈现复杂的动态特性.通过求解极限环的稳定域(region of stability,RoS)可以对其背后的原理进行很好的解释.本文以串联谐振型ICPT系统为例,首先对其建立了分段线性模型与碰撞映射模型,并利用ICPT系统的对称特性将碰撞映射模型进行了简化.通过理论分析,推导出基于二次型李雅普诺夫函数的稳定性判据.设计算法,以稳定性判据为约束条件,RoS体积为目标函数,通过遗传算法实现了RoS的求解.最后通过实例对此方法进行了验证.相比于现有方法,本方法求得的RoS体积更大,从而更好地解释了软开关ICPT系统的动态特性.本文所提出的方法也可用于求解其他分段线性系统的极限环RoS,为这类系统的研究与设计提供了一定的参考.