To address the limitations of the separate fluoride removal or detection in the existing materials,herein,amino-decorated metal organic frameworks NH_(2)-MIL-53(Al)have been succinctly fabricated by a sol-hydrothermal...To address the limitations of the separate fluoride removal or detection in the existing materials,herein,amino-decorated metal organic frameworks NH_(2)-MIL-53(Al)have been succinctly fabricated by a sol-hydrothermal method for simultaneous removal and determination of fluoride.As a consequence,the proposed NH_(2)-MIL-53(Al)features high uptake capacity(202.5 mg/g)as well as fast adsorption rate,being capable of treating 5 ppm of fluoride solution to below the permitted threshold in drinking water within 15 min.Specifically,the specific binding between fluoride and NH_(2)-MIL-53(Al)results in the release of fluorescent ligand NH2-BDC,conducive to the determination of fluoride via a concentration-dependent fluorescence enhancement effect.As expected,the resulting NH_(2)-MIL-53(Al)sensor exhibits selective and sensitive detection(with the detection limit of 0.31μmol/L)toward fluoride accompanied with a wide response interval(0.5-100μmol/L).More importantly,the developed sensor can be utilized for fluoride detection in practical water systems with satisfying recoveries from 89.6% to 116.1%,confirming its feasibility in monitoring the practical fluoride-contaminated waters.展开更多
基金supported by the National Key R&D Program of China(No.2017YFA0207202)the National Natural Science Foundation of China(No.51572263,No.51772299,No.41701259).
文摘To address the limitations of the separate fluoride removal or detection in the existing materials,herein,amino-decorated metal organic frameworks NH_(2)-MIL-53(Al)have been succinctly fabricated by a sol-hydrothermal method for simultaneous removal and determination of fluoride.As a consequence,the proposed NH_(2)-MIL-53(Al)features high uptake capacity(202.5 mg/g)as well as fast adsorption rate,being capable of treating 5 ppm of fluoride solution to below the permitted threshold in drinking water within 15 min.Specifically,the specific binding between fluoride and NH_(2)-MIL-53(Al)results in the release of fluorescent ligand NH2-BDC,conducive to the determination of fluoride via a concentration-dependent fluorescence enhancement effect.As expected,the resulting NH_(2)-MIL-53(Al)sensor exhibits selective and sensitive detection(with the detection limit of 0.31μmol/L)toward fluoride accompanied with a wide response interval(0.5-100μmol/L).More importantly,the developed sensor can be utilized for fluoride detection in practical water systems with satisfying recoveries from 89.6% to 116.1%,confirming its feasibility in monitoring the practical fluoride-contaminated waters.
基金supported by the National Natural Science Foundation of China(41977085)the Qing Lan Project,the 333 Project of Jiangsu Province(BRA202030)+4 种基金the Six Talent Peaks Project in Jiangsu Province(2018-TD-JNHB-012)the Lvyang Jinfeng Fund of Yangzhou(137012724)the Research Foundation of Yangzhou University(137012446)Doctor of Mass Entrepreneurship and Innovation of Jiangsu Province(337090323)the Innovation Fostering Fund of Yangzhou University.