期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
L_(2,1)范数正则化的广义核判别分析及其人脸识别 被引量:6
1
作者 傅俊鹏 陈秀宏 葛骁倩 《计算机科学与探索》 CSCD 北大核心 2017年第1期124-133,共10页
特征选取和子空间学习是人脸识别的关键问题。为更准确选取人脸中丰富的非线性特征,并解决小样本问题,提出了一种新的L_(2,1)范数正则化的广义核判别分析(generalized kernel discriminant analysis based on L_(2,1)-norm regularizati... 特征选取和子空间学习是人脸识别的关键问题。为更准确选取人脸中丰富的非线性特征,并解决小样本问题,提出了一种新的L_(2,1)范数正则化的广义核判别分析(generalized kernel discriminant analysis based on L_(2,1)-norm regularization,L21GKDA)。利用核函数将原始样本隐式地映射到高维特征空间中,得到广义核Fisher鉴别准则,再利用一种有效变换将该非线性模型转化为线性回归模型;为了能使特征选取和子空间学习同时进行,在模型中加入了一种L_(2,1)范数惩罚项,并给出该正则化方法的求解算法。因为方法借助于L_(2,1)范数惩罚项的特征选取能力,所以它能有效地提高识别率。在ORL、AR和PIE人脸库上的实验结果表明,新算法能有效选取人脸的非线性特征,提高判别能力。 展开更多
关键词 人脸识别 特征选取 子空间学习 L2 1范数 核判别分析
下载PDF
基于局部敏感直方图的时空上下文跟踪 被引量:4
2
作者 葛骁倩 陈秀宏 傅俊鹏 《传感器与微系统》 CSCD 2017年第1期149-152,156,共5页
针对当前目标跟踪算法在目标区域光照剧烈变化、长时间遮挡或者平面内旋转时会发生偏移甚至跟丢这一现象,提出了基于局部敏感直方图的时空上下文跟踪算法。该算法以贝叶斯框架为基础,利用生物视觉特性,结合底层灰度特征,基于局部敏感直... 针对当前目标跟踪算法在目标区域光照剧烈变化、长时间遮挡或者平面内旋转时会发生偏移甚至跟丢这一现象,提出了基于局部敏感直方图的时空上下文跟踪算法。该算法以贝叶斯框架为基础,利用生物视觉特性,结合底层灰度特征,基于局部敏感直方图提取光照不变特征,建立目标与背景的统计相关模型来实现跟踪,使跟踪时偏移较小且不会跟丢目标。在对不同视频序列的实验表明:基于局部敏感直方图的时空上下文算法和多示例学习算法相比,在光照变化、平面内旋转或者遮挡时都表现出比较好的跟踪效果且中心误差较小,具有较强鲁棒性。 展开更多
关键词 目标跟踪 时空上下文 生物视觉系统 局部敏感直方图 光照不变特征
下载PDF
L_(2,1)范数正则化的不相关判别分析及其在人脸识别中的应用 被引量:2
3
作者 傅俊鹏 陈秀宏 葛骁倩 《计算机工程与科学》 CSCD 北大核心 2017年第2期343-350,共8页
对高维数据降维并选取有效特征对分类起着关键作用。针对人脸识别中存在的高维和小样本问题,从特征选取和子空间学习入手,提出了一种L_(2,1)范数正则化的不相关判别分析算法。该算法首先对训练样本矩阵进行奇异值分解;然后通过一系列变... 对高维数据降维并选取有效特征对分类起着关键作用。针对人脸识别中存在的高维和小样本问题,从特征选取和子空间学习入手,提出了一种L_(2,1)范数正则化的不相关判别分析算法。该算法首先对训练样本矩阵进行奇异值分解;然后通过一系列变换,将原非线性的Fisher鉴别准则函数转化为线性模型;最后加入L_(2,1)范数惩罚项进行求解,得到一组最佳鉴别矢量。将训练样本和测试样本投影到该低维子空间中,利用最近欧氏距离分类器进行分类。由于加入了L_(2,1)范数惩罚项,该算法能使特征选取和子空间学习同时进行,有效改善识别性能。在ORL、YaleB及PIE人脸库上的实验结果表明,算法在有效降维的同时能进一步提高鉴别能力。 展开更多
关键词 人脸识别 特征选取 子空间学习 L2 1范数 不相关判别分析 FISHER判别分析
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部