采用Mg(OH)_2模板策略结合原位KOH活化法合成出超级电容器用煤沥青基多孔炭(PCs)。运用透射电子显微镜、拉曼光谱仪、X射线光电子能谱仪和N_2吸脱附技术对PCs进行表征。利用恒流充放电、电化学阻抗谱和循环伏安法对PCs的电化学性能进行...采用Mg(OH)_2模板策略结合原位KOH活化法合成出超级电容器用煤沥青基多孔炭(PCs)。运用透射电子显微镜、拉曼光谱仪、X射线光电子能谱仪和N_2吸脱附技术对PCs进行表征。利用恒流充放电、电化学阻抗谱和循环伏安法对PCs的电化学性能进行研究。结果表明,PC具有大的比表面积(3 145 m^2 g^(-1))和大量的短孔。当作为超级电容器的电极材料时,在6 mol L^(-1) KOH电解液中,在0.05 A g^(-1)电流密度下,显示出272 F g^(-1)的高比电容;在20 A g^(-1)电流密度下,比电容为217 F g^(-1),呈现好的倍率性能;经10 000次充放电循环后,其比电容保持率为96.69%,展现出优异的循环稳定性。本工作为高性能超级电容器用沥青基多孔炭的制备提供了一种简单的方法。展开更多
利用纳米CaCO_3模板耦合原位KOH活化方法合成出超级电容器用多孔类石墨烯炭材料(PGCMs)。采用透射电子显微镜、拉曼光谱、X射线光电子能谱和N_2吸脱附技术对PGCMs进行了表征。结果表明,PGCMs的比表面积为1 542~2 305 m^2 g^(-1),其取...利用纳米CaCO_3模板耦合原位KOH活化方法合成出超级电容器用多孔类石墨烯炭材料(PGCMs)。采用透射电子显微镜、拉曼光谱、X射线光电子能谱和N_2吸脱附技术对PGCMs进行了表征。结果表明,PGCMs的比表面积为1 542~2 305 m^2 g^(-1),其取决于模板、KOH/沥青的比例和活化温度。当模板/沥青比为1.5、KOH/沥青比为1.5,在850℃恒温1 h所得PGCM的超电容性能最佳。同时,PGCMs具有相互连接的类石墨烯炭层和丰富的分级短孔。在6 M KOH电解液中,0.05A g^(-1)电流密度下,超级电容器用PGCMs电极的比容高达293 F g^(-1);在20 A g^(-1)电流密度下,其电容保持为231 F g^(-1),显示了良好的倍率性能;经7 000次循环充放电后,其电容保持率为97.4%,展现了优异的循环稳定性。此外,在BMIMPF_6离子液体电解液中,0.05 A g^(-1)电流密度下,PGCMs电极的比容高达267 F g^(-1)。PGCMs超级电容器的能量密度达148.3 Wh kg^(-1),其相应的平均功率密度为204.2 W kg^(-1)。本工作为利用廉价的纳米CaCO_3模板合成高性能超级电容器用石油沥青基多孔类石墨烯炭材料提供了一种可行的方法。展开更多
基金National Natural Science Foundation of China(U1361110,U1508201 and U1710116)~~
文摘采用Mg(OH)_2模板策略结合原位KOH活化法合成出超级电容器用煤沥青基多孔炭(PCs)。运用透射电子显微镜、拉曼光谱仪、X射线光电子能谱仪和N_2吸脱附技术对PCs进行表征。利用恒流充放电、电化学阻抗谱和循环伏安法对PCs的电化学性能进行研究。结果表明,PC具有大的比表面积(3 145 m^2 g^(-1))和大量的短孔。当作为超级电容器的电极材料时,在6 mol L^(-1) KOH电解液中,在0.05 A g^(-1)电流密度下,显示出272 F g^(-1)的高比电容;在20 A g^(-1)电流密度下,比电容为217 F g^(-1),呈现好的倍率性能;经10 000次充放电循环后,其比电容保持率为96.69%,展现出优异的循环稳定性。本工作为高性能超级电容器用沥青基多孔炭的制备提供了一种简单的方法。
基金National Natural Science Foundation of China(1361110,1710116)~~
文摘利用纳米CaCO_3模板耦合原位KOH活化方法合成出超级电容器用多孔类石墨烯炭材料(PGCMs)。采用透射电子显微镜、拉曼光谱、X射线光电子能谱和N_2吸脱附技术对PGCMs进行了表征。结果表明,PGCMs的比表面积为1 542~2 305 m^2 g^(-1),其取决于模板、KOH/沥青的比例和活化温度。当模板/沥青比为1.5、KOH/沥青比为1.5,在850℃恒温1 h所得PGCM的超电容性能最佳。同时,PGCMs具有相互连接的类石墨烯炭层和丰富的分级短孔。在6 M KOH电解液中,0.05A g^(-1)电流密度下,超级电容器用PGCMs电极的比容高达293 F g^(-1);在20 A g^(-1)电流密度下,其电容保持为231 F g^(-1),显示了良好的倍率性能;经7 000次循环充放电后,其电容保持率为97.4%,展现了优异的循环稳定性。此外,在BMIMPF_6离子液体电解液中,0.05 A g^(-1)电流密度下,PGCMs电极的比容高达267 F g^(-1)。PGCMs超级电容器的能量密度达148.3 Wh kg^(-1),其相应的平均功率密度为204.2 W kg^(-1)。本工作为利用廉价的纳米CaCO_3模板合成高性能超级电容器用石油沥青基多孔类石墨烯炭材料提供了一种可行的方法。