采用常压室温等离子体(atmospheric and room temperature plasma,ARTP)诱变脱氮假单胞菌(Pseudomonas denitrificans)并从中筛选高产维生素B12突变株,确定等离子诱变最优处理时间75,s、输出功率100,W.通过流式细胞仪并结合核糖开关(rib...采用常压室温等离子体(atmospheric and room temperature plasma,ARTP)诱变脱氮假单胞菌(Pseudomonas denitrificans)并从中筛选高产维生素B12突变株,确定等离子诱变最优处理时间75,s、输出功率100,W.通过流式细胞仪并结合核糖开关(riboswitch)感应元件检测其荧光值以初筛诱变后高产菌株,并利用48孔板高通量培养发酵,酶标仪快速检测维生素B_(12)产量,建立完整的诱变后高通量筛选体系.通过4轮ARTP诱变,筛选得到的突变株PA320-M4-1B1在250,mL摇瓶发酵6,d的条件下,维生素B_(12)产量达到(103.2±2.1)mg/L,较初始菌株PA320的(71.9±1.8)mg/L提高了43.8%,且遗传性状稳定.展开更多
在众多生物中利用具有切割作用的CRISPR/Cas9系统与非同源性末端连接(non-homologous end joining,NHEJ)修复系统或同源性末端连接(homology-directed repair,HDR)修复系统共同完成基因编辑工作都有报道。但是由于NHEJ的不精确性以及一...在众多生物中利用具有切割作用的CRISPR/Cas9系统与非同源性末端连接(non-homologous end joining,NHEJ)修复系统或同源性末端连接(homology-directed repair,HDR)修复系统共同完成基因编辑工作都有报道。但是由于NHEJ的不精确性以及一些微生物中HDR效率较低导致生物体死亡限制了该工具的发展。基于CRISPR/dCas9系统构建而成的DNA碱基编辑器作为一种编辑工具,可靶向地实现碱基之间的转换,且不导致微生物死亡。DNA碱基编辑器在微生物中已经实现靶向编辑工作,可以同时多个位点进行编辑,同时可以利用该工具将编码氨基酸的密码子转化为终止密码子,提前终止翻译过程实现对基因的失活。本文主要对DNA碱基编辑器的作用原理,发展历程以及在微生物中的应用做了概述,最后提出了该工具存在的一些不足之处,并结合相关研究展望了未来的研究方向。为在微生物中开发与利用DNA碱基编辑的研究提供了思路。展开更多
文摘采用常压室温等离子体(atmospheric and room temperature plasma,ARTP)诱变脱氮假单胞菌(Pseudomonas denitrificans)并从中筛选高产维生素B12突变株,确定等离子诱变最优处理时间75,s、输出功率100,W.通过流式细胞仪并结合核糖开关(riboswitch)感应元件检测其荧光值以初筛诱变后高产菌株,并利用48孔板高通量培养发酵,酶标仪快速检测维生素B_(12)产量,建立完整的诱变后高通量筛选体系.通过4轮ARTP诱变,筛选得到的突变株PA320-M4-1B1在250,mL摇瓶发酵6,d的条件下,维生素B_(12)产量达到(103.2±2.1)mg/L,较初始菌株PA320的(71.9±1.8)mg/L提高了43.8%,且遗传性状稳定.
文摘在众多生物中利用具有切割作用的CRISPR/Cas9系统与非同源性末端连接(non-homologous end joining,NHEJ)修复系统或同源性末端连接(homology-directed repair,HDR)修复系统共同完成基因编辑工作都有报道。但是由于NHEJ的不精确性以及一些微生物中HDR效率较低导致生物体死亡限制了该工具的发展。基于CRISPR/dCas9系统构建而成的DNA碱基编辑器作为一种编辑工具,可靶向地实现碱基之间的转换,且不导致微生物死亡。DNA碱基编辑器在微生物中已经实现靶向编辑工作,可以同时多个位点进行编辑,同时可以利用该工具将编码氨基酸的密码子转化为终止密码子,提前终止翻译过程实现对基因的失活。本文主要对DNA碱基编辑器的作用原理,发展历程以及在微生物中的应用做了概述,最后提出了该工具存在的一些不足之处,并结合相关研究展望了未来的研究方向。为在微生物中开发与利用DNA碱基编辑的研究提供了思路。