A series of thermodynamics experiments were used to optimize the hot forging process of 20SiMn low-carbon alloy steel. A dynamic recrystallization and grain growth model was developed for the 20SiMn steel for common p...A series of thermodynamics experiments were used to optimize the hot forging process of 20SiMn low-carbon alloy steel. A dynamic recrystallization and grain growth model was developed for the 20SiMn steel for common production conditions of heavy forgings by doing a nonlinear curve fit of the experiment data. Optimized forging parameters were developed based on the control of the dynamic recrystallization and the MnS secondary phase. The data shows that the initial grain size and the MnS secondary phase all affect the behavior of the 20SiMn dynamic recrystallization and grain growth.展开更多
基金the Key Technologies Research and Development Program of the Eleventh Five-Year Plan of China (No. 2006BAF02B07)
文摘A series of thermodynamics experiments were used to optimize the hot forging process of 20SiMn low-carbon alloy steel. A dynamic recrystallization and grain growth model was developed for the 20SiMn steel for common production conditions of heavy forgings by doing a nonlinear curve fit of the experiment data. Optimized forging parameters were developed based on the control of the dynamic recrystallization and the MnS secondary phase. The data shows that the initial grain size and the MnS secondary phase all affect the behavior of the 20SiMn dynamic recrystallization and grain growth.